
www.manaraa.com

Memory Optimization of Java Based Applications with the help of

Garbage Collection Log

By

Bashar M. Faraneh

Supervised by:

Dr. Akram M. O. Al Mashayki

Amman Arab University

College of Computer Science and Information Technology
Department of Computer Science

December, 2013

Amman – Jordan

www.manaraa.com

I

www.manaraa.com

II

www.manaraa.com

III

Dedication

I dedicate this thesis to all those who have assisted me throughout my

study for the Master’s degree.

Amongst those are my father, mother, wife, my kids and sisters.

My parents who encouraged me to take this step forward and continue the

Master’s degree, at the beginning; I thought that my study for this degree

won’t add up a value for me, especially that I work in the field of software

development. Now since I came up with the idea of this thesis, I am very

grateful that I accomplished this degree and I will be looking forward to

continue with the PHD InshAllah.

As said; Many thanks to my beloved wife Lama who supported me by all

means throughout my study.

I also dedicate this thesis to Dr. Akram Al Mashayky and all my friends.

www.manaraa.com

IV

Acknowledgement

First of all, all praise to Allah who helped me to come up with each thought

within this thesis.

I would like also to thank my supervisor Dr. Akram Al Mashayki for his

support, patience and guidance.

I would also like to thank the head of the department Dr. Alaa Al-Hamami

for his patience.

www.manaraa.com

V

Table of Contents

Dedication .. III

Acknowledgement ... IV

Table of Contents .. V

List of Figures .. IX

List of Abbreviations .. XI

Audience of the Thesis ...XII

Abstract. .. XIII

 XV .. الخلاصـــــــــة

Chapter One – Introduction ... 1

1.1 Importance of Applications ... 1

1.2 1.2 Importance of Web Applications ... 3

1.3 1.3 Benchmarking & Performance measurement 4

1.4 1.4 What is Poor Performance? .. 6

1.5 1.5 Performance Aspects ... 7

1.6 1.6 The Problem ... 8

1.7 1.7 Proposed solution ... 9

1.8 Structure of the Thesis .. 11

1.9 Chapter One - Introduction: .. 11

1.10 Chapter Two - Literature Review: .. 12

1.11 Chapter Three - Java Memory Structure and Possible Issues: 12

1.12 Chapter Four - The Proposed Solution: 12

1.13 Chapter Five - The Tool: .. 12

www.manaraa.com

VI

1.14 Chapter Six – Conclusions and Future Work: 12

Chapter Two – Literature Review.. 13

1.15 2.1 Chapter Introduction .. 13

1.16 2.2 Memory monitoring Methods ... 13

2.2.1 Memory readings .. 14

2.2.2 Memory Profiling ... 15

2.2.3 Offline Memory Monitoring .. 17

2.2.3 Garbage Collection Profiling ... 19

2.2.4 Offline Garbage collection monitoring 20

Chapter Three – Java Memory Structure and Possible Issues 24

1.17 3.1 Chapter Introduction .. 24

1.18 3.2 Java Objects Management .. 24

1.19 3.3 Memory Structure/Hierarchy .. 25

1.20 3.4 The Java platform .. 25

3.4.1 Virtual Machine: .. 25

1.21 3.5 JVM Memory Structure .. 27

3.5.1 JVM Memory Divisions ... 27

3.5.2 JVM Generations .. 28

1.22 3.6 Heap Divisions ... 29

1.23 3.7 Garbage Collection .. 30

1.24 3.8 Memory Usage and Cleanup ... 31

1.25 3.9 JVM and Physical Machine Resources Sharing 36

1.26 3.10 Memory Issues ... 37

3.10.1 Insufficient Memory .. 38

3.10.2 Inefficient Memory Usage ... 42

www.manaraa.com

VII

1.27 3.11 Object’s Memory Allocation & Lifecycle 48

1.28 3.12 Garbage Collection Log ... 53

1.29 3.13 Collection Types .. 54

1.30 3.14 What Minor GC tells us? .. 54

Chapter Four: The proposed solution ... 57

1.31 4.1 Chapter Introduction - How this work helps out! 57

1.32 4.2 Garbage Collection Log Analyzer to the rescue!.................... 58

1.33 4.3 Reading GC Log file ... 60

1.34 4.4 Yesterday’s weather .. 61

4.4.1 Prerequisite Parameters ... 63

4.4.2 Garbage Collections & Their Types .. 66

1.35 4.5 Collection Types based on the need: 70

1.36 4.6 Object’s Lifetime .. 72

1.37 4.7 Memory Leaks ... 75

1.38 4.8 Heap Size .. 84

1.39 4.9 Permanent Generation Space ... 85

1.40 4.10 Implicit & Explicit GC .. 85

1.41 4.11 Summary of Theories/Algorithms: .. 87

Chapter 5 – The Tool (GC Log Analyzer) ... 90

1.42 5.1 Chapter Introduction -About the Tool 90

1.43 5.2 Prerequisites & Hints ... 93

1.44 5.3 Memory Analysis Information ... 94

5.3.1 Virtual Memory against Free Physical Memory 94

5.3.2 Heap Average against Allocation .. 96

5.3.3 Young, Tenured and Permanent generations Allocations 97

www.manaraa.com

VIII

5.3.4 Young/Old & Permanent Generations usage 99

1.45 5.4 Garbage Collection Analysis Information 101

5.4.1 Garbage Collection Distribution .. 101

5.4.2 Young GC Pause Time ... 102

5.4.3 Full GC Pause Time ... 104

1.46 5.5 Recommendations & Hints .. 105

5.5.1 Heap Usage Details .. 105

5.5.2 Premature Promotion Information ... 106

5.5.3 Full GC Information ... 109

5.5.4 Minor GCs ... 111

5.5.5 Memory Leak .. 112

5.5.6 Young Space Info .. 114

5.5.7 Explicit GC ... 115

5.5.8 Responsiveness Need .. 116

5.5.9 Throughput Need .. 117

1.47 5.6 Tool Technical Details .. 118

1.48 5.7 Samples from code .. 118

Chapter Six - Conclusions and Future Work ..126

References ...128

www.manaraa.com

IX

 List of Figures

Figure 1: Basic HTTP Web Communication

Figure 2: Visual VM - Memory Monitoring

Figure 3: Visual VM – Heap Dump Analysis

Figure 4: Visual VM – Garbage Collection Monitoring

Figure 5: IBM PMAT – Garbage Collection Analysis

Figure 6: IBM PMAT – Garbage Collection Output

Figure 7: GCViewer Console

Figure 8: JVM Memory Allocation

Figure 9: Heap Divisions

Figure 10: Objects distribution

Figure 11: Threads stack Trace

Figure 12 : Basic Java Application Architecture

Figure 13: Heap memory normal usage.

Figure 14: Big process memory consumption.

Figure 15: Efficient memory usage, no possible leak.

Figure 16: Efficient memory usage, no possible leak.

Figure 17: Non-efficient memory usage, possible leak.

Figure 18: In-efficient memory usage, possible leak.

Figure 19: Object Allocation within Heap memory – Phase 1

Figure 20: Object Allocation within Heap memory – Phase 2

Figure 21: Objects allocation from Eden to Survivor Spaces

Figure 22: Object Allocation within Survivor spaces.

Figure 23: Objects Promotion

Figure 24: Objects Allocation

Figure 25: Objects Promotion

Figure 26: Minor garbage collection

Figure 27: Objects distribution against time.

Figure 28 - Possible Heap Memory Leak

Figure 29 - Reclaimable Heap Memory

Figure 30 - GC Log Analyzer brief description

Figure 31 : GC Log Usage Prerequisites

www.manaraa.com

X

Figure 32: GC Log – Memory Analysis – Virtual against Memory

Figure 33: GC Log – Memory Analysis – Average Usage against allocation

Figure 34: GC Log – Memory Analysis – Young against Old against

Permanent generation

Figure 35: GC Log – Memory Analysis – Young against Old against

Permanent generation usage.

Figure 36: GC Log – Garbage Collection Analysis – Collection Distribution

Figure 37: GC Log – Garbage Collection Analysis – Young GC Pause 103

Figure 38: GC Log – Garbage Collection Analysis – Old GC Pause

Figure 39: GC Log – Recommendations & Hints – Heap Info

Figure 40: GC Log – Recommendations & Hints – Promotion Information

Figure 41: GC Log – Recommendations & Hints – Full GCs Information

Figure 42: GC Log – Minor GCs Details

Figure 43: GC Log – Memory Leak Information

Figure 44: GC Log – Young Space Information

Figure 45: GC Log – Explicit GC Information

Figure 46: GC Log – Responsiveness Need

Figure 47: GC Log – Throughput Need

www.manaraa.com

XI

List of Abbreviations

DB: Database.

GC: Garbage Collection

I/O: Input-Output

JVM: Java Virtual Machine

KB: Kilo Bytes.

MB: Mega Bytes.

RAM: Random Access Memory.

www.manaraa.com

XII

Audience of the Thesis

This work has been prepared for experience Java developers as well as

project managers who need to get knowledge in the performance issues

related to the memory of any Java web application in general present a

systematic approach for finding and solving memory related issues with the

help of the output of the garbage collection process.

www.manaraa.com

XIII

 Abstract

Nowadays, performance of web applications tends to be one of the most

important topics when building applications. We build applications to serve

different kinds of needs that also would vary in their importance. It would

take tremendous efforts building such beneficial applications, thus

maintaining such applications and making sure that they are highly scalable

and available is even a harder job. Accordingly, this thesis aims to shift the

way of approaching and tackling performance problems to a new era,

which is being proactive rather than reactive. Memory related problems are

one of the most popular problems amongst performance problems,

according to the design and purpose of the application, we can predict or

come up with a sufficient resources setup for the application, but still, this

may still not be sufficient to maintain an available and scalable application.

In fact; the resources setup may vary according to the usage of the

application

Applications may not crash, or it may not be suffering from a noticeable

slowness, this does not mean that the available memory for the application

or the memory usage of the application is normal.

With the help of the Garbage Collection Log in Java, the researcher

believes that we can learn many things about the memory usage if normal

or not and even if the memory setup is correct or not, which as a result may

enable us to tune Java based applications performance accordingly by

tuning it’s memory usage.

There are many tools available in the market that generates readings from

the garbage collection log, but none are used to really analyze this log and

generate even more useful information that could easily tell us the source

of the problem and how to act. We need to read the pattern of memory

usage for the application which no other tool provides.

www.manaraa.com

XIV

We cannot depend on Snapshots of the memory at a specific time (Heap

dumps) to get the whole picture of the memory usage and pattern since

generating a Heap dump at a specific time is a costly operation, thus, a

constant generation of Heap dumps at each second of the course of the

application sounds irrational.

So, we need other means to analyze the memory usage/consumption of

the memory throughout the course of the application that is not costly and

easy to get.

The problem is that we used to deal with garbage collection log as the

output of the garbage collection operation, but as the researcher will prove

in this work, the activities of the garbage collection not only show the result

of each operation, but could also tell us more like if the current memory

setup is correct or if there is a problem with the application implementation

itself, in order to take action and fix issues accordingly.

Doing so, could even be very beneficial in determining problems that the

customers did not notice yet, even that they do exist. If No one is

complaining, this does not mean that everything is going fine behind the

scenes.

The new approach helps discovering problems that with the right

parameters and circumstances could explode to a severe performance

issue. The theories and concepts that are theoretically presented by this

work are proved and justified using a new tool that the researcher has

developed to help better solve performance issues related to memory. This

will be the first tool to tackle and present solutions for such issues rather

than only some readings.

www.manaraa.com

XV

 الخلاصـــــــــة
في الوقت الحاضر يكاد يكون أداء تطبيقات الويب من أهم العوامل التي تأخذ بعين الاعتبار عند البدء ببناء

ف من بناء تطبيقات جديدة هو تلبية الإحتياجات المتنوعة لسوق العمل بمستوياتها المتباينة الهدتطبيقات جديدة.

من الأهمية ، وهكذا تطبيقات مفيدة تحتاج إلى مجهود كبير لا بل المحافظة عليها و ضمان استمرارية فعاليتها مع

 إزدياد عدد المستخدمين هو التحدي الأكبر

هذه الفرضية التي تهدف إلى تغيير المسار المعتمد بحل المشاكل المتعلقة بالأداء بجعلها بناء على ما سبق ، يأتي دور

خطوة إستباقية بدلا من أن تكون خطوة تصحيحية. تعتبر المشاكل المتعلقة بالذاكرة واحدة من أكثر المشاكل التي

ق من خلال لمعدات اللازمة لتشغيل التطبيتؤثر على أداء أي تطبيق ، يمكننا القول بأننا نستطيع التنبؤ بالمصادر وا

 كيفية و حجم إستخدامه مع أن هذا الشيئ قد لا يكون حقيقة الأمر.

الذي تم تطويره بلغة الجافا، يمكننا معرفة الكثير عن كيفية إستخدام Garbage Collection Logبإستخدام

 رة هي الطريقة الأمثل.الذاكرة، إن كان هناك من خطأ ما، وإن كانت طريقة إستعمال الذاك

لإعطاء بعض القراءات Garbage Collection Logفي الوقت الحالي تتوافر الكثير من الأدوات التي تقوم بقراءة

التي يمكن الاستفاده منها، لكن ولا واحدة منهم تقوم بتحليل تفصيلي لتقديم معلومات إضافية قد تكون أكثر

 يفية معالجتها. لهذا نحن بأمس الحاجة للأداة التي تقوم بذلك. أهمية بالإشارة إلى مصدر المشكلة وك

مثلا نظرا لكلفتها، فهي تعطي معلومات عن Heap dumpsلا يمكننا الإعتماد على الطرق المتوفرة حاليا مثل

هلة سالذاكرة بوقت محدد فقط لذا يبدو من غير المنطقي أستعمالها بشكل مستمر. لذا نحن بحاجة لإستخدام أداة

 لتحليل كيفية إستخدام الذاكرة بشكل مستمر لمراقبة أداء التطبيق

 مشكلات الأداء برؤية جديدة

كنتيجة للعملية ذاتها لكنني هنا وكباحث مهتم garbage collection logالمشكلة هي أننا إعتدنا على التعامل مع

قط لعرض نتائج كل عملية وإنما تزودنا هي ليست ف garbage collectionبهذا الموضوع سوف أقوم بإثبات أن

بمعلومات إضافية على سبيل المثال إن كانت الذاكرة تستخدم بطريقة صحيحة أم لا، أو إن كانت هناك أي مشكلة

بالتطبيق نفسه فهذا يساعد على تدارك المشكلة و حلها بشكل فوري. وبهذه الطريقة سيتم تحديد المشاكل التي

الجتها حتى قبل أن يتم ملاحظتها من قبلهم، فعدم إكتشاف المشاكل و التذمر منها لا يعني تواجه المستخدمين ومع

 بالضرورة أن كل شئ يسير على ما يرام.

www.manaraa.com

XVI

الطريقة الجديدة تساعد على إكتشاف المشاكل المتعلقة بالأداء والتي قد تنجم عن إستخدام التطبيق بالظروف

 الإعتيادية

فاهيم التي سبق ذكرها نظريا في هذا العمل من خلال الأداة الجديدة التي قام بتطويرها والم النظريات تم إثبات

 الباحث للمساعدة بحل مشاكل الأداء المرتبطة بالذاكرة.

 ستكون هذه الأداة هي الأولى من نوعها التي تقدم حلول حقيقية عوضا عن تلك التي تقدم مجرد قراءات.

www.manaraa.com

1

Chapter One – Introduction

1.1 Importance of Applications

Computer applications play a significant role nowadays in accomplishing

complex tasks in no time. Key businesses cannot stand having their

applications being unavailable even shortly. [1]

Customers buy applications to help them accomplishing their business

processes efficiently and quickly. They even build strategic plans and

decisions with the help of such applications.

For this reason, customers cannot tolerate applications that were supposed

to fulfil and achieve their objectives being not available or even of low

performance.

Another new term emerged lately, which is the “User Experience” in which

the users/customers nowadays help setting the limits and standards for the

tolerated and acceptable response time. As a result, many methodologies

and tools were introduced to help measuring the application’s efficiency,

productivity, and for sure performance.

Making the application more scalable imposes new challenges and even

threats for the application’s owners to deal with. On the other hand, making

applications more scalable threatens their availability.

Application’s availability as mentioned previously in this research means

simply whether the application is online or offline, applications that are

always available can be defined as highly available applications, otherwise,

it is set to be poorly available.

Simply, application’s Performance can be described, as the raw speed of

your application in terms of a single user.

www.manaraa.com

2

Java Based Applications

According to recent studies of the programming community, Java is

probably one of the most popular programming languages in the world. We

are used to the presence of Java in all kind of servers, personal desktops,

and more recently embedded systems. In fact the Java Standard Platform

is being used in all types of embedded devices, ranging from routers, smart

phones, and 3G telecommunication devices. [2]

The Java language has many advantages over other programming

languages as follows:

 Platform Neutral

 Automatic Memory Management

 Object Oriented

 Easy to learn.

One of the important strengths of the Java language as stated previously is

the automatic memory management, in which the management of the

memory of a Java based application is left to the JVM itself, rather being

the responsibility of the developers besides the role of designing/building

applications.

Having such ability to automatically manage memory of a program leaves

not much space for developers to tune the application’s memory.

This is correct up to an extent, developers still could have an impact on the

application’s memory if for example they choose the wrong API’s to

accomplish the tasks, or if they create objects that are irrelevant to the task

or even redundant.

Programs may even need different resources to accomplish tasks, like I/O

operations,

www.manaraa.com

3

Database operations, or any other resources. It is extremely important to

efficiently use such resources, because if not, it may extremely affect the

application’s memory which is a valuable resource that should be best

utilized in able to maintain a scalable and available application.

As pointed previously, it is the responsibility of the Java to automatically

manage the memory of the applications it hosts; still, there are many

responsibilities on the developers of the applications, which if not done

carefully could extremely negatively impact the memory aspect of any

application.

1.2 1.2 Importance of Web Applications

As illustrated in the previous section, it is a critical job to best utilize the

available resources of any application, especially the memory part.

The job becomes even harder when it comes web based applications. For

instance, what is acceptable memory consumption within a stand-alone

application may not be acceptable for a web based application.

Key businesses need to extend their services base as much as possible,

web applications make this much easier to achieve.

Web Application Basic Structure

It starts when any client request a service from the web application, the

server then tries to process the request and forward it to the correct handler

to handle the request, it may require accessing the database, and finally,

the response is sent back to the client with an answer to his request, as

part of the response.

www.manaraa.com

4

This end to end operation is called Request-Response model, starts from

the client as a request and also ends there as a response. This operation

may face some bottlenecks at any stage which may affect the response

time and/or the ability for the server to serve more requests, which as a

result lowers the application’s performance.

Figure 1: Basic HTTP Web Communication

The operation can be referred to as the transaction, which is simply; a

single logical application behavior, that is; the client’s request leads to a call

to the appropriate application logic on the server.

1.3 1.3 Benchmarking & Performance measurement

Customers need to do as much transactions as possible to make the best

of a profit.

In the world of web applications, what is the standard measurement for

performance?

www.manaraa.com

5

It can be different according to the perspective, for some of us, it might

refer to scalability, the more the scalable, the better the performance, for

others it might mean the availability, but for user’s it’s usually the response

time.

Drilling down into the “Response time” aspect of the performance is

somehow tricky, for instance, an operation within an application maybe

taking much time because the resources are being inefficiently used by

another operation within the application, which as a result could be

misleading regarding our findings and analysis.

Take another example, observing memory consumption for a specific

operation within a specified time interval could also be misleading; results

that may seem normal could be not and vice versa. Memory could be

highly used due to inefficient usage of the resource rather than it is being

efficiently used.

For that reason and many others, getting out with reliable, reasonable

benchmarks for performance is somehow tricky.

Who defines benchmarks?

According to the researcher’s experience with web applications, setting up

the benchmarks of the performance for the different business processes

was only left to the applications owners.

With time, and the increasing demand on web applications, customers

gained more experience with web applications and the depended more and

more on these applications in a way that can determine what is acceptable

and what is not.

www.manaraa.com

6

1.4 1.4 What is Poor Performance?

Activities that create demands for system resources that cause response

time to exceed users expected tolerances.

When it comes to poor performance, it could be related to a congested

network that is currently unable to host new customers, it could be related

to DB where it is loaded with many data, it could be related to IO operations

where the requested number of operation is more than the servers could

handle, it could be a CPU issue, where there are many clients to be served

per milliseconds, or it could be related to memory issues where there is no

enough memory to serve that amount of requests.

This work is going to target the memory aspect of the performance with

respect to the garbage collection process, more specifically application’s

performance that is built on top of the Java technology.

Performance monitoring or measurement is not a new term; it has been

always the main concern for application’s owners.

In order to achieve acceptable response time, all of the components of the

web application should be tuned to achieve a better application’s

performance.

Memory is one of the critical resources needed for any application, for this

reason, it should be carefully used, otherwise applications would be

inefficient, not scalable or event not available.

For instance, memory tuning and monitoring applications are divided into

two approaches:

- Memory Profiling Tools.

- Detailed analysis of objects distributions and allocation sizes.

www.manaraa.com

7

1.5 1.5 Performance Aspects

As already illustrated in the previous chapter, performance issues could be

classified under many categories:

- Memory related issues.

- CPU related issues.

- I/O related issues.

- Network related issues.

- Database related issues.

These are considered critical resources that if not used efficiently and

effectively could easily result in resource starvation which may affects the

response time of an application, hence lowering the user’s experience.

If we started with the Database tuning options, this topic have many

researches and its own methodology that reached to a point that is mature

enough to tune DB transactions or even DB structure related problems.

The same goes for network and files operations (I/O) related issues, many

tools emerged that enables technical teams to monitor the traffic of the

network and the operations on the file system to track source of problems.

The discussed aspects at the beginning of this section are easy and

straight forward to track, tracking a specific path of the network, tracking

traffic of specific nodes, tracking the source of I/O problems.

As for the other classifications: CPU and Memory, they have been always

considered a tricky topic, it always bares more researches and

investigations. Actually problems related to these two categories of a Java

applications are the most common and needs more efforts to work on.

These aspects directly affect response time in which:

- A congested CPU could simply affect response time, hence the

user’s experience.

www.manaraa.com

8

- An overloaded memory also could simply affect response time.

They are very important because with each request within a web

application, CPU is needed to execute certain tasks (processes) and

memory is needed to load and prepare the commands for the CPU to

execute.

1.6 1.6 The Problem

Memory issues fall under the following two classifications:

- Insufficient Memory Available.

- In-Efficient Memory Usage.

Knowing the classification of a memory issue has a big impact on solving

the memory related problems, without knowing the type of the problem; it

would be impossible solving the issues.

Several methodologies currently exist to help solving memory issues, the

problem here is not with the shortage of the methodologies/approaches or

even tools, the problem is with discovering issues at the right time.

The second shortage of the current methodologies is the weakness to

discover memory issues if no one is complaining or if no one noticed any

performance issue. Current approaches would be very costly in fulfilling this

need as this work is going to present.

Whenever memory related issues are spotted, the current approaches

would provide an excellent way of analyzing the issue and the real cause of

it. The challenge here is that most of the memory related issues do not

appear out of a sudden [3]. This means that in order to analyze and spot

memory issues (which as pointed already pointed, most of them do not

appear out of a sudden) with the help of the current approaches would be

very costly and not applicable.

www.manaraa.com

9

1.7 1.7 Proposed solution

What we need is a way to know how efficient the memory usage or setup

for our applications is, the approach is simply by depending on another

source of profiling and dealing with it in a new way to know these very

important points: The memory sufficiency for the application and the

Efficiency of the memory usage for the application.

If we want to approach the memory issues and activities, we need the most

efficient way, which is the “Garbage Collection Log”, where the Garbage

Collection is the process responsible for freeing and managing the memory

resources. From the activities of the Garbage Collection, it can tell us a lot

about the health of an application from memory perspective.

The Garbage collection activities are represented by a “log” file which

contains every single activity for the garbage collector whenever it needs to

cleanup/manage memory for the application.

When we say “manage memory” it is referred to the “Allocation and De-

allocation” processes, allocation refers to the process of allocating memory

for objects and processes, while de-allocating refers to the process of

reclaiming back the reserved memory for these objects/processes

whenever they no longer need them.

Profiling the Garbage Collection Log is a not new thing, but it needs more

attention to make it easier on application developers or even system

administrators at the customer’s side to take a decision towards any

memory issues if present, current tools provide numbers out of the

Garbage collection log, which still needs analysis from the application

developers. The Proposed approach in this work does the analysis and

provides straight forward recommendations for either the application

developers or again the system administrators.

www.manaraa.com

10

It even presents a new approach for when to monitor the garbage collection

log to resolve the issues related to memory in general or even related to

memory leaks as discussed previously, in order to get early and constant

feedback on the health of the memory rather than waiting for customers to

complain about the performance of the application that is related to

memory. It is very frustrating for customers to have their applications very

slow or being unavailable for any reason, so by this we can know if any

memory issues available before they turn out to be a show-stopper issues,

hence react upon before it’s too late.

It is a not common case to have performance issues within applications, at

the contrary, applications should be developed very efficiently and

effectively not to produce any performance issues, still maybe according to

the usage of the application or even to the number of users, things may

change and in specific scenarios, some components of the application may

appear to be weak whenever applications are heavily loaded. For this

reason, we need to be act before memory issues become severe problems.

Depending on the two current approaches mentioned in section (1.5.1

Introduction) for memory monitoring, would be too late, because they are

used either to check the current usage of the memory by the application, or

even to analyze a snapshot of the memory at a specific time; usually this

snapshot is taken whenever the application is about to crash or when it is

extremely slow.

If No one is complaining, this does not mean that everything is fine.

The approach that the researcher has followed depends on the fact of

discovering small or average performance issues related to memory before

they turn out into big performance problems.

This research comes up with a systematic approach towards tuning the

memory of Java based applications with the help of garbage collection

log

www.manaraa.com

11

The research propose theoretical solutions towards solving problems

related to memory depending on the garbage collection log, then it even

presents a practical solution by developing a new tool that facilitates the

process of discovering problems and presenting a better way in solving

them.

Implementation Details

The theories and solution provided by this work only applies to web

based Java applications. The solution was developed using the latest

technologies in the Java language.

Technical details:

 Java 5 & 6.

 Eclipse Kepler IDE

 PrimeFaces

 gcviewer

1.8 Structure of the Thesis

1.9 Chapter One - Introduction:

The aim of this chapter is to put the readers on track with the importance of

Web applications in accomplishing nowadays tasks and according to their

importance, the availability and scalability of applications varies.

It also discusses in brief the meaning of Performance and the means of

measuring it for Web applications and the challenges that faces any

performance tuning strategy of web applications.

It also simply defines what a poor performance is when it comes to the

memory aspect of an application.

www.manaraa.com

12

It also puts the readers on track for the importance of memory aspect of

any web application and its role in maintaining stable application.

1.10 Chapter Two - Literature Review:
This chapter put the readers on track with the current approaches towards

monitoring of the memory of an application and also the tools available to

analyze garbage collection log.

It finally point out what the current approaches/tools are missing.

1.11 Chapter Three - Java Memory Structure and Possible Issues:

This chapter explains the structure of the memory for the JVM and its

different divisions. It also explains the Object’s lifecycle within the JVM

memory. This is very important in order to understand how to come up with

possible solutions to memory related issues.

1.12 Chapter Four - The Proposed Solution:

This chapter illustrates the solution that this research presents to approach

memory related issues that causes performance bottlenecks.

1.13 Chapter Five - The Tool:

This chapter illustrates the developed tool by the researcher, which is a

new tool that the researcher developed to approach and present solutions

to the performance issues that are related to the memory or garbage

collections activities.

1.14 Chapter Six – Conclusions and Future Work:

This chapter briefly explains the conclusion of this work along with the

future work plan.

www.manaraa.com

13

Chapter Two – Literature Review

1.15 2.1 Chapter Introduction

As previously said, there are many available tools and researches that

targets all the performance issues for applications, from DB monitoring, I/O,

network, CPU to memory monitoring applications.

Within this chapter, the research will only focus on the best available

memory monitoring tools developed so far, and then it will finally briefly

explain the elaboration and the added value that this research will present.

Memory is considered one of the systems important resources, according

to the nature of the application; the memory setup varies.

Applications could be small, medium or large/enterprise sized. In all cases,

applications providers all over the world consider the memory an expensive

and limited resource that should be used efficiently.

As mentioned previously; this paper will target the memory performance of

Java based applications.

Before drilling down into the problem and the proposed solutions, we have

to point out what is currently introduced in the market and what has been

developed in this area.

1.16 2.2 Memory monitoring Methods

www.manaraa.com

14

There are many options for monitoring memory of applications, mainly

done with the help of tools nowadays.

There are many tools from different vendors today in the market; they

mainly focus on monitoring the memory used by an application throughout

the course of an application.

Such capabilities are very important, but not to a big extent. Meaning that,

they are useful up to a limit only, they have much functionality that can be

categorized in brief to:

 Instant monitoring: Instantly monitor the memory, used to check out

the memory usage currently by applications.

 Recorded monitoring: For history tracking; used to check out the

memory usage within a specified time-frame.

Why both options are needed?

The monitoring capabilities provided by such tools are mostly used by the

applications developers to track how much memory a specific process

consumes, this is beneficial in checking if the implementation of this

process should be tuned or not, or even to decide if another

implementation methodology should be chosen.

Also, it gives us a way to check the overall progress of the application in

terms of memory usage for a specific business day within the customer’s

organization.

2.2.1 Memory readings

There are a number of tools available that helps monitoring the memory

usage of an application at runtime, showing the available against free

memory.

www.manaraa.com

15

This is helpful for the applications owners to use if to monitor whether the

application is performing well or not in general, or in a specific scenario.

It could be used to get:

- Initial Memory Used.

- Average Memory Used.

- Max Memory Used.

- Min Memory Used.

This is interesting and beneficial; it helps in getting to know how much

memory applications consume according to the above classifications. The

problem with this approach, let us call it, “Online Memory Monitoring” in

reference to getting instant readings about the memory for an application,

the problem here is that it does not give us much details and also it does

not inform us when wrong things happen.

On the other hand, these readings could be misleading because the same

application could behave differently on the customer’s side, many things

could affect the application’s performance, from the way of usage, to peak

hour’s usage and to the number of users using the application, these could

be of big difference also, and the output even varies from customer to

another.

These concerns should be covered in any monitoring strategy, which

currently are not.

2.2.2 Memory Profiling

One of the most famous tools to monitor memory usage is the VisualVM

which is an Oracle product (originally from Sun Microsystems).

www.manaraa.com

16

It contains some features to monitor the memory usage as illustrated in

Figure 2. As an example, it uses charts to represent instant consumption of

the memory during the lifetime of the application.

Figure 2: Visual VM - Memory Monitoring

www.manaraa.com

17

2.2.3 Offline Memory Monitoring

Besides the online monitoring provided by such tools, it has an offline

monitoring option, were it could show the usage in details the distribution of

objects in memory. Meaning that; it shows for each type of an object how

much memory it is using from the total amount of memory.

This is done through what is called a “memory dump” to get a snapshot of

the memory consumption at a specific time.

Heap dump is a snapshot of the memory of a Java process [4].

This can be done in two ways:

- Automatic: An automatic heap dump could be generated whenever a

threshold is met or an out of memory error is thrown

- Manual: A manual snapshot of memory could be generated at any

time.

Heap dumps are very useful in showing which entities most consuming

memory as shown in Figure 3.

www.manaraa.com

18

Figure 3: Visual VM – Heap Dump Analysis

It shows the memory usage per object which is very useful in determining

areas with highest memory consumption,

As we noticed, such tools give us indications of the application’s health at

specific point of execution, which is after the fact an issue occurs.

So, using such tool, gives us instant indication of the application’s health

which is not quite accurate in determining the overall progress of an

application.

www.manaraa.com

19

Heap Dumps Trade-off

As heap dumps are very useful, they are also costly, they actually stop the

processes of the application from being executed until finished, and the

time it takes to generate a heap dump varies depending on the amount of

memory currently being used.

This means that, we can only know the memory details only at specific

time, which as a result does not represent the memory consumption of an

application.

2.2.3 Garbage Collection Profiling

Garbage collection is a process that is responsible for freeing unused

objects from memory, these activities runs in the course of the application.

There are also many tools used to monitor the activities of the garbage

collector, again, many of them are categorized under the “Online”

monitoring tools (Profiling tools).

Online garbage collection monitoring tools are used to monitor the activities

of the garbage collector towards a specific process, hence knowing how

the garbage collector behaves.

Again, this is not highly useful since, it is only used to monitor single

process readings.

Here is how the Visual VM tool helps with the garbage collection log.

www.manaraa.com

20

Figure 4: Visual VM – Garbage Collection Monitoring

As it is shown in the Figure 4, the Visual GC that is part of the Visual VM

tool, it shows the different areas of memory that the garbage collection is

responsible for managing them.

2.2.4 Offline Garbage collection monitoring

2.2.4.1 IBM PMAT for IBM Rational Developer

IBM PMAT is a good tool for analyzing garbage collection log and giving

some statistics of the collection process.

The researcher thinks that it’s a good tool but it’s not sufficient because we

need a tool that gives us the pattern between the different readings and

drives us through the process of tuning with the help of garbage collection

log.

www.manaraa.com

21

Here is some screenshots from the tool:

Figure 5: IBM PMAT – Garbage Collection Analysis

This tool is used to analyze garbage collection log offline, that still not

efficient enough to put us on track with the status of the application and

what can be done rather than only raw readings that do not tell us what

should be done.

As shown in Figure 5, it illustrates some readings that are good, but not

good enough, because we need to know the pattern between the

application and these readings.

www.manaraa.com

22

Figure 6 shows the analysis of each garbage collection event.

Figure 6: IBM PMAT – Garbage Collection Output

www.manaraa.com

23

2.2.4.2 GCViewer 1.33

This is another tool used to analyze garbage collection log offline, that still

not efficient enough to put us on track with the status of the application and

what can be done rather than only raw readings that do not tell us what

should be done as illustrated in Figure 7.

Figure 7: GCViewer Console

Before drilling into the concepts, algorithms and hypothesis that this

research is going to present, it is needed first to point out and explain the

memory and the garbage collection structure in Java.

www.manaraa.com

24

Chapter Three – Java Memory Structure and Possible Issues

1.17 3.1 Chapter Introduction

This chapter will put us on track with the structure of the memory within any

JVM. It is important to understand this structure in details in order to come

up with a better understanding of the possible approaches towards memory

tuning.

1.18 3.2 Java Objects Management

Java Enterprise Applications are Java based applications that are

developed to serve enterprise needs. One of the most important features in

the Java programming language is that the management of memory

resources is left to Java itself.

The architecture of the Java language is designed to best serve the

concept of automatic handling of the objects within an application. With

time, objects maybe still referenced and still needed, other objects may not

be needed anymore, so that’s why within the Java language is a process

called “Garbage Collector” that manages such operations.

Garbage collectors are of two types, thus, in order for the collector to

operate efficiently, it was a must dividing the Java memory called “Heap”

into generations, assigning each collector to each of these generations.

In order to understand how this work will help in determining and solving

performance problems with the help of the “Garbage Collector” activities, it

is needed first to explain the Java memory structure and how it is divided

into different areas and what does each area hold.

It is very critical first to understand the basic features of the Java language

regarding the collection process before presenting any solutions on how to

resolve the known issues.

www.manaraa.com

25

1.19 3.3 Memory Structure/Hierarchy

Any memory consists of the following types:

 Registers.

 RAM.

 Cache.

Memory in general is needed because it is known of its speed over

traditional storage drives (Hard disk drives) for permanent storage,

accessing data within memory area is much faster than loading and

reading it from the permanent storage, that’s why it is more expensive.

For this reason, we should carefully deal with such small/costly resource

that is needed for any application.

1.20 3.4 The Java platform

3.4.1 Virtual Machine:

One of the most important concepts in the Java programming language is

promoting it from being only a programming language to be an independent

Virtual Machine that can manage itself.

As previously said, Java is not just a programming language only, it’s a

platform by which it can operates solely within the hosting machine if it

grants the JVM some of the resources in order to operate.

Memory, CPU and storage are one of the common resources needed by

the JVM.

This work will only target the memory aspect of an application because of

its critical role in the availability and scalability of any application.

Any Java Virtual Machine (JVM) memory is divided into the following

areas/segments:

www.manaraa.com

26

 Heap Memory: The Heap memory is the runtime data area from

which memory for all class instances and arrays are allocated. Heap

memory is managed through an automatic process called “Garbage

Collection”

 The Non-Heap Memory: Stores the runtime constant pool.

Being a platform itself, made it easy for programs to run on any platform,

since the responsibility of making the same code runs on any platform is

the responsibility of the Java platform.

At the startup of any Java program, the JVM gets some portion of the RAM

memory from the operating system, as the shown in Figure 8; it is the

general view of a JVM memory.

Figure 8: JVM Memory Allocation

The Heap memory is a pre-allocated memory from the RAM, at startup, the

JVM is given a pre-allocated portion of RAM once, so it does not have to

fetch free memory from the RAM

www.manaraa.com

27

1.21 3.5 JVM Memory Structure

Since the Java language is not only a programming language, it’s a

platform that is self-contained and has the needed capabilities to manage

its resources on its own; therefore it has its own memory structure.

3.5.1 JVM Memory Divisions

The JVM memory is divided into 2 main areas [5].

 Heap Memory.

 Young Space.

 Old Space.

 Non-Heap Memory.

 Permanent Generation.

 Code Cache.

Figure 9: Heap Divisions

The Heap memory is where Java program data is stored. The Non-Heap

space is where the meta-data required by the Java Virtual Machine is stored.

www.manaraa.com

28

3.5.2 JVM Generations

A. The Young Space [5]

1. The Eden Space:

Any new object will be stored in the part of the Heap memory, the Eden

space.

2. Survivor Spaces:

The objects that reside in this space are objects who survived through the

process of garbage collection of the Eden Space.

Both the Eden Space and Survivor Space are called “Young Generation”

space of the Heap.

The only difference is that Objects that age (Survive garbage collection are

being moved from Eden to Survivor spaces)

B. The Old Space(Tenured Space) [5]

It is the pool that contains objects that existed for some time in the Survivor

Space.

C. The Permanent Generation [5]

It is the area where the meta-data of an application is stored, whether this

data was describing user data like his classes/methods or the standard

library data.

Example: User’s Classes and Methods, even the Java library classes.

Someone could ask why the memory in Java has been divided into such

spaces; they are divided in this way for two reasons:

www.manaraa.com

29

1. Lifetime of Java objects.

2. The way in which the memory is being managed. (Algorithm or

concept in which memory is managed or maintained).

The lifetime of any Java object is related to the garbage collector role in

Java.

When we are talking about memory with the Java applications, it is needed

to mention the important role of Garbage collection that is explained on

different stages throughout this paper.

1.22 3.6 Heap Divisions

The most important part of the memory of a Java application is the Heap. It

is the part that this work will focus on in terms of the performance tuning

approaches.

Again, Heap is divided into 2 main parts:

1. Young Space.

2. Old Space.

The Young Space is where all new objects are allocated. It is called Young

because only relatively new objects are stored in Young and kept there for

a portion of time.

The Young as we saw is divided into two portions; Eden Space and

Survivor Spaces.

Whenever a new object is created, it will be allocated to the Eden Space of

the Young generation, which is the first stop of the newly created objects.

www.manaraa.com

30

1.23 3.7 Garbage Collection

Java allows developers to create objects/variables without worrying about

the cleanup of the resources that is; memory management. The process of

allocation/de-allocation is handled by the Java platform itself.

Garbage Collection can be categorized under the concept of Memory

Management.

Memory Management is the process of recognizing or identifying when the

objects in memory are no longer needed. This process in the Java

language is left to the Java platform itself, rather than being left to be

handled by the programmer, since it may cause many issues such as

memory leaks.

Garbage collector is responsible for:

 Allocating Memory

 Recover memory from objects that are no longer referenced.

Garbage collection solves many allocation/de-allocation problems, still

there are some challenges that make this cleanup process a tough one, for

example we can create objects indefinitely until there is no more memory

available to handle this.

www.manaraa.com

31

1.24 3.8 Memory Usage and Cleanup

With every trigger for a garbage collection, a log is generated accordingly.

Before we take a closer look at how this log looks like or what does it

contains, we need to know how we can benefit from it.

Garbage collection as this work pointed previously is the process of freeing

up some chunks of the memory, whether it was of the Young or Old Space.

With every trigger for a garbage collection, we can set a flag to log this

operation.

From this log we can know very useful information that could tell us a lot

about the health of the application, for instance, many Full or Minor GC

events could mean a lot, it could mean that the garbage collection type is

not efficient and should be changed, or it could mean to increase the

allocated memory for the application or even it could mean to decrease the

allocated memory for one of the Heap spaces.

Based on the researcher’s experience with many applications running on

the Java platform, application owners tend to react to performance issues

after the fact a problem rise. The application could be running and

functioning well but maybe not up to the expectations, yet they would not

know, with the correct circumstances, a performance bottleneck could

easily show up eventually. The application could be suffering but a little,

this is where we should focus on.

For instance, if an “Out of memory” error is thrown, the perfect solution is to

have a “Heap dump” and/or “Threads dump” at the moment where there is

an unbearable performance issues, or even; if an out of memory error is

thrown.

www.manaraa.com

32

But what about the overall behavior of the application, is everything is fine

and doing well when no extreme issues rises up? An issue could be

noticeable after hours or even days since the application’s start up time, but

it suddenly became a show stopper that should be solved and tends to be a

severe issue that should be solved right away to be able to continue using

the application.

The researcher believes that we can do a lot and have useful information

about the health of the application before a show-stopper issue rises. We

can even predict what would happen with the current status of the

application.

The researcher believes that such information that can be classified as

“Corrective” and “Preventive” actions can be extracted from the Garbage

collection log.

Preventive actions through which can give us an indication on how the

application is going to behave soon or even later on. Corrective actions

were when something starts to go wrong even if not yet emerged for the

customer; we can act and solve it.

Figure 10 shows a sample Heap dump of an application, as illustrated, it

shows the number of objects against each type and the Heap usage

accordingly.

The Heap dump is a capture of the Heap usage at a specific time, so it only

captures what objects were available at only certain point of execution,

thus; it does not represent the overall status of the application, not even a

close clue, it only shows at a certain point how the application is doing, it

could be now going not bad, but we cannot know if there is something

wrong about to happen

www.manaraa.com

33

Figure 10: Objects distribution

As said, this is helpful whenever an issue rises and must be fixed, the Heap

dump is a consuming operation that cannot be done too frequent since it

needs resources to operate.

www.manaraa.com

34

THREADS DUMP

As shown in figure 11, Threads dump provide an image for the available

running/blocked threads. From Threads dump, we can know instantly what

threads are running. This technique is helpful to track performance issues

that are not related to memory.

Figure 11: Threads stack Trace

Now, if objects keep being promoted to the “Old Space” if finally full,

garbage collection is triggered, this time of a different type, called “Major

Garbage Collection” also known as “Full GC”. As the minor GC it is a “Stop

the world” action,

www.manaraa.com

35

 but since the size of the Old Space is much bigger than the Young Space,

it is a costly operation, it will take longer than the Minor GC, thus a time

consuming operation.

This research is going to present with a simple example, how could

performance issues rise in the course of the application and are related to

the code of the application or due to the configuration of the application

itself.

This is important before starting to present any solution, in order to simplify

the understanding of solutions afterwards.

It starts here...

Here are the following scenarios to put us all on track with how issues rise

at the customer’s side and how do application owners (precisely

development) reacts to such issues.

A customer let’s say X, has different users using the application, with time,

users either start feeling that the application is less responsive and slower

than usual. Users start complaining. With time, issues may become

intolerable, so a complaint is sent to the customer’s support/IT department

to check the issues out.

Customer’s support team receives the complaint and starts checking out

the application, which not much to do about, so they start checking the

server itself and its resources. This actually could give wrong solutions, for

example; a CPU that is fully used could be interpreted that it is needed to

increase the number of CPUs. A fully occupied memory may give wrong

indication to increase the available memory.

Machine’s resources are limited, increasing the available resources is not

always the solutions on the contrary, and doing that should have a stronger

justified reason.

www.manaraa.com

36

The work is going to explain how the Java platform manages its own

resources.

1.25 3.9 JVM and Physical Machine Resources Sharing

Before knowing how to solve problems related to the resources, it is

important to know how the JVM gets its resources and how they are

consumed.

Figure 12 : Basic Java Application Architecture

Java applications are always hosted within Java Virtual machine (JVM),

this gives the Java language superiority over other programming

languages. This is illustrated in Figure 12.

Upon starting, the JVM request some resources from the “Operating

System” in order for it to manage the application(s) it is going to host.

For instance, the virtual machine needs memory and CPU; let’s talk about

the memory aspect.

Let’s take the following scenario as an example:

www.manaraa.com

37

The Physical machine has a memory of about 3 GB of RAM. The

application administrator chooses to set up the memory in accordance to

the available memory, so if there are other programs or for example the

database is also available on the same server, then approximately not

more of 60 % of the available memory should be allocated to the

application.

In brief, let us consider the application reserved about 1.5 GB of RAM; this

amount is the maximum amount of memory to be reserved by the

application. Now after the application starts, JVM reserve an initial portion

of the memory to the application, let’s say; 256 MB of RAM, with time it

may need more and more, so the memory of the application keeps growing

and growing.

If the application needs memory more than the maximum reserved, the OS

will shut the JVM along with the application down because it is requesting

more than what is allowed, if this is allowed, then it will affect other

applications and may prevent other system processes from being able to

run, that’s why the Operating system chooses to shut it down.

But why after that someone done some estimation regarding the needed

memory of the application, more memory is needed? Didn’t the application

owner recommend a recommended memory size?

What really caused this issue, what could be the causes of memory is not

sufficient?

1.26 3.10 Memory Issues

As this work explained previously, if the application needs more memory

than what it is allowed to reserve, then the application will be shut down,

then someone could think that this is very likely to happen. This research

will now explain that when the application is shut down because of the

memory, it is not really as what it seems.

www.manaraa.com

38

When the application’s process gets terminated because of a memory

related issue, it could be because of two reasons:

1. Insufficient Memory.

2. Inefficient usage of memory by the application.

These are two important concepts to classify performance issues related to

memory

3.10.1 Insufficient Memory

Applications may crash (stop) because it needs more memory than the

maximum configured/reserved memory for the applications.

Someone could simply say, well we can increase the memory, that could

be true, but till when? We should know that memory (RAM) in any machine

is a costly resource and it might not be feasible or even reasonable to ask

the customer of the application to keep increasing the available memory for

the application each time it needs more.

What really should happen is that the application’s owners (developers)

should define the scale or range of what this application needs, example;

this application is classified that it needs memory up to 4 GB, 2 GB, 16 GB

or whatever, what is important as said is to point out this information to the

public or for each specific customer.

It is very important that this should be defined upfront, let’s take another

example, and suppose that the application is only supported on Linux

operating system, would the application owners hide such important

information? Or even that it could only run on a 64bit machines not on

32bit.

So as this information sounds very critical to be known by the customer

prior to buying the application, it is also important to declare how much

memory this application is expected to need.

www.manaraa.com

39

So, someone could say now it’s the role of the application’s owner to

specify this, the answer is yes, and also yes it would solve the problem, but

not very precisely.

How could application’s owners (developers) recommend the memory

needed by the application?

It’s not an easy job, the application developers could monitor how the

application behaves in term of memory usage or even other resources

usage which this work will not point out to, such as CPU usage, network

usage, IO usage and DB usage.

www.manaraa.com

40

Figure 13: Heap memory normal usage.

For instance, Figure 13 shows the memory usage for an application, the

developers could keep monitoring such readings about the memory while

using the system normally.

This simulation of usage could give the developers an indication of how

much the application needs memory, which is the output that they wish to

recommend for their customers.

At this point, the application’s owners are somehow comfortable with these

recommendations, so they will provide the following necessary findings

about the application:

 Work on Linux operating system.

 Work on 64 bit

 Recommended maximum memory size is for example: 2 GB.

This reliefs the application’s owners from surprises later on, but does this

mean that there will be no memory issues for the application? Does this

mean that the customers will not suffer from the application being slow or

down because of memory issues that are classified of “Insufficient

Memory”

The answer to this question is yes but up to 70% - 80%, still not 100%

coverage.

This is maybe due to the following reasons:

 Testing of the application may not have covered all of the scenarios

of the business of the application.

 Customers may come up with scenarios that the developers & the

application’s owners could have missed.

www.manaraa.com

41

 Load testing was not sufficient, the number of users that may uses

the system may increase in a way that could increase the usage of

the memory, hence, memory won’t be sufficient anymore.

As we noticed, it’s not an easy job at all. It requires tremendous efforts to

come up with recommendations for the best memory setup.

So, for instance, if the customers deployed the application on the server

and starts using it, if the recommended memory is found, an Out of

Memory error means that it’s time to increase the memory resource for this

application to keep functioning as expected.

www.manaraa.com

42

3.10.2 Inefficient Memory Usage

This work explained in the previous section what is meant by an “Out of

Memory” error and that it could be caused since no sufficient memory

available or incorrect configuration of the application’s memory.

Now this work will explain the other possible cause for the “Out of

Memory” error, which is the “Inefficient Memory Usage”.

Memory is available and it should be sufficient for the application, but

suddenly it becomes not sufficient because it is being highly used but

inefficiently by some of the application’s processes, giving a false indication

regarding the need for an increase for the memory of the application.

Due to this, server’s administrators may choose to increase the memory

available for the server and in this case, they are not solving the real cause

of the issue, most probably when such issues occur, it is highly possible to

recur.

Such misleading error “Out of memory” that is classified of “non-efficient”

usage of the memory, the customer do not need to deal with, it should be

sent for the application’s developers to do some investigation to know the

real cause for this and solve it once and for all.

 It is mainly related to either:

 Some parts of the applications may not be designed or developed

efficiently.

 Correct memory setup, but not suitable memory cleaning algorithm.

Both reasons outlines inefficient memory usage, meaning that; memory

usage is high in some cases or some areas while it shouldn’t be.

For example, a process which may be known that it shouldn’t consume

more than let’s say 100MB, it is consuming up to 400MB, which as it

sounds really bad, because there are other processes for different users

that needs also memory usage.

www.manaraa.com

43

Figure 14: Big process memory consumption.

The application’s owners or developers could choose to do some

enhancements on the memory usage of an application, this process is

called Tuning.

As Figure 14 illustrates, the memory usage for updating banks accounts

nearly takes up to 400MB which the developers may consider it too much

and think that they could enhance it so that it only uses up to 100MB of

memory maximum in order to best utilize the memory resource.

Memory currently being used for

updating bank accounts.

www.manaraa.com

44

The tuning this time is through enhancing the code written. This way, tuning

will leave more memory to serve other areas of the application and even

more users.

To summarize, the previous section was explaining memory issues related

to bad design of parts in the code, which may lead to inefficient memory

usage.

The research will point out to the second cause of such problem, which is:

“Memory is setup well, but the chosen or the default cleaning

algorithm is not suitable”

Before drilling down into this point, the work has to explain again in brief the

cleaning process.

Each stage of the application execution and each process within the

application need some resources in order to run. Since many processes

could happen in the course of the application execution or even in seconds

of time, allocation for memory for each process is done accordingly.

Memory allocated for each process within the application is being released

within a process called “Garbage Collection”

In the following sections, the research will show examples of some

programs producing different memory outputs.

Figure 15 illustrates an efficient usage of the memory by an application. As

it is shown, the memory that is being used is shortly released to be used by

another process or by another user.

www.manaraa.com

45

Figure 15: Efficient memory usage, no possible leak.

This is an efficient use of the memory, the spikes shows the usage of the

memory, the spikes are followed with a decrease in memory usage,

meaning that the used memory is now freed-up.

Memory reserved

for a process gets

released

afterwards.

Meaning that:

garbage

collection did run.

Memory is

currently being

used for the

task.

www.manaraa.com

46

Figure 16: Efficient memory usage, no possible leak.

The process of which the memory usage decrease after the process is

done is called garbage collection; it makes the usage decrease, so to show

this more specifically:

Figure 17 illustrates an inefficient use of memory were the memory used is

not getting released and so, it cannot be used by other process.

Figure 17: Non-efficient memory usage, possible leak.

The figure shows that memory is increasing over time without decreasing,

which is very un-normal, but we should understand first when memory get

released and when it’s not.

Let’s return to our previous example, updating bank accounts for users,

suppose that this operation take 5 minutes to accomplish and uses about

300 MB of memory, what should happen here is that after the process is

done, the 300MB should be released to be used again for another process.

It should, meaning that this is the expected behavior, but is there a case

where they don’t get released back?

Actually there is, it happens a lot and when happens, nothing you could do

about it. This is referred to as “Memory Leak”.

www.manaraa.com

47

This happens most of the time when code is not designed well, in which

some of the Java objects keeps referencing the objects of the done

process, when this happens, the garbage collector sees that there are

other objects referring the objects of the process, at this point, the garbage

collector is unable to reclaim back the memory of this process, hence

memory won’t be released, this is called a leak in the memory. Memory

leaked won’t be released until application is restarted.

But what is the harm from this, if a memory leak happens; does it mean

that the application will not be able to run?

With time yes, so if the initial application memory needed was 100 MB, it is

now 300 MB since memory reserved was not released. This means that

less memory is now available for the application which means that with

time, it is very likely that an “Out of Memory” error will happen.

As shown in Figure 18, it shows a memory leak for an application. It shows

that after a process completes, memory does not return back to original

Heap size, meaning that; the application lost over 1 GB as the figure shows

and cannot be reclaimed back throughout the whole application.

Original Initial

Memory

New Memory Initial

Size

www.manaraa.com

48

Figure 18: In-efficient memory usage, possible leak.

So in brief, an application not designed well could result in:

 Inefficient use of memory, as an example to remind us all: a process

that is using 300MB while it should be only up to 100MB.

 Code not designed well that keeps referencing objects and not

releasing them.

This is how the “Out of Memory” errors are classified, either:

 Insufficient Memory available.

 Inefficient Memory usage.

Now that we defined the categories, there should be no problem, but again

there is.

When an application crashes (shuts down) because of a memory issue, the

error thrown is:

“Out of Memory” error, there is no way to know if the memory really

insufficient or because of inefficient use of memory.

In order to know the real reason behind this error, the developers have to

do some thorough investigation, which is time consuming.

The researcher will present a way to know such detail and even more, with

the help of a tool newly designed that is built on some algorithms that will

be explained separately.

In order for the researcher to explain his theories and points, it is needed

first to explain how the garbage collection process happens.

1.27 3.11 Object’s Memory Allocation & Lifecycle

Garbage collection is a process about reclaiming objects that no longer

needed, this process is triggered automatically by the JVM in a specific

scenario.

www.manaraa.com

49

Allocation is the process of allocating memory to certain process or task.

Figure 19: Object Allocation within Heap memory – Phase 1

As shown in Figure 19, as soon as objects are created, they are placed in

the Eden space.

www.manaraa.com

50

Figure 20: Object Allocation within Heap memory – Phase 2

With time, Eden Space gets full with objects and no more objects could be

allocated into the eden space, so this space should be cleared out in a

process of two stages:

1. Remove\Delete objects that are no longer used (Unreferenced

Objects).

2. Move objects that are still used to the “Survivor Space” since they are

still referenced.

This type of garbage collection is called Minor Garbage Collection.

When the minor garbage collection is triggered, it checks all objects in the

Eden, if an object is still referenced, it won’t be deleted, which means it is

currently in use. Referenced objects will be moved to another space called

“Survivor Space” meaning; object survived a garbage collection.

Figure 21: Objects allocation from Eden to Survivor Spaces

At certain point, after the minor gc is finished, Eden Space is emptied.

The process is repeated as long as the program is executing, newly

created objects are kept assigned to the Eden Space, as soon as it is full; a

minor garbage collection is triggered.

www.manaraa.com

51

A normal program execution witnesses many and many Minor garbage

collections.

At the second or later minor garbage collections, objects that were moved

in a previous garbage collection to survivor spaces, will have their age

incremented by one and will be moved to the next Survivor space, which

we need to remember, still part of the Young space.

Meaning that, each time an object survive a minor garbage collection will

move to the next Survivor Space. At the end of each garbage collection we

can notice that Eden Space always cleared out and at least one Survivor

space as well.

Figure 22: Object Allocation within Survivor spaces.

As shown in Figure 22, B is the only object in this example which survived

as illustrated more than one minor gc, in this case; 2 garbage collections

An important thing to point out here is that when the garbage collection

process is triggered, it means nothing else is running, program execution

pauses during the garbage collection, which is unnoticeable.

www.manaraa.com

52

If one of the still referenced objects exceeded the maximum age threshold,

“Tenuring Threshold”, the objects will be moved to the “Old Space” or

“Tenured Space” in a process called “Promotion”.

If the age threshold “Tenuring Threshold” was set to 15, then when an

object age reaches 15 and is still referenced, it will be moved out of the

Young Space to the Old Space.

Figure 23: Objects Promotion

So in brief, allocation is when allocating new objects into Young Space

(specifically into Eden)

Promotion: Moving objects from Young Space to Old Space.

Allocation

www.manaraa.com

53

Figure 24: Objects Allocation

Allocation: When new objects are allocated memory in the Young

Generation.

Promotion

Promotion: If objects survived a specific threshold of minor garbage

collections, they are moved to the Old generation from the Young

generation in a process called promotion.

Figure 25: Objects Promotion

1.28 3.12 Garbage Collection Log

With each garbage collection activity, a log is generated accordingly. With

each line of log, it tells us a lot, from the freed memory to the available to

the different areas of the heap.

As an example, here is a sample line of the log file:

Sample GC Log Output

www.manaraa.com

54

4.636: [GC [PSYoungGen: 230400K->19135KB(268800KB)] 230400K-

>19135KB(2058752KB), 0.0635710 secs]

If we zoom in on the important information in the GC Log:

230400KB->19135K(268800K)

268800KB >> is the Young generation size (256 MB)

230400KB >> Is the Young Generation size BEFORE garbage collection

(255 MB)

19135KB >> is the amount of memory FREED after garbage collection (18MB)

The numbers before and after the arrow (e.g., 325407KB->83000KB from

the first line) indicate the combined size of live objects before and after

garbage collection, respectively.

1.29 3.13 Collection Types

Let’s in brief summarize what spaces the garbage collector is responsible

of:

Young generation: Most of the newly created objects are located here.

Since most objects soon become unreachable, many objects are created in

the young generation, and then disappear. When objects disappear from

this area, we say a "minor GC" has occurred.

Old generation: The objects that did not become unreachable and

survived from the young generation are copied here. It is generally larger

than the young generation. As it is bigger in size, the GC occurs less

frequently than in the young generation. When objects disappear from the

old generation, we say a "major GC" (or a "full GC") has occurred.

1.30 3.14 What Minor GC tells us?

Minor Collection is triggered when then JVM is unable to allocate space for

new objects.

www.manaraa.com

55

Young space is where the short living objects are placed.

It is called young because it is the place where objects which live for a

short period of time are placed in.

Most of the objects are shortly living objects, which means that they live for

a short period of time, for this reason, most of the garbage collections

activities are of type “Minor GC”.

The Java virtual machine (JVM) will be suspended for the duration of the

minor garbage collection; it’s a stop-the-world activity, even that they are

considered fast garbage collection.

Now since minor garbage collections are too many and they are fast, they

affect the overall response time of the application. Let’s always remember,

it is fast because Young space is smaller than Old space, hence, it is

quicker.

They are too small to cope with all the objects available, that’s why minor

garbage collection is triggered very frequently.

Whenever the application is under heavy load, minor garbage collections

could be very frequent; many frequent minor garbage collections could be

as bad as a single long-lasting one.

So, it is not good to have frequent young garbage collections, the

researcher will explain the possible root causes for the frequent young

garbage collections:

1. Too small Young space considering the application’s load

2. Too many objects allocated very quickly.

www.manaraa.com

56

3.

In both cases, young space fills up quickly, this triggers minor garbage

collection

Figure 26: Minor garbage collection

www.manaraa.com

57

Chapter Four: The proposed solution

1.31 4.1 Chapter Introduction - How this work helps out!

Again, it should be known that there is no other mechanism to depend on

to know the overall progress of the application; it is very hard and costly to

depend on other mechanisms as:

Heap Dump for available objects within the memory, it can be configured to

be an automated process to generate a dump within a specific interval, but

this is very consuming operation especially on a production environment.

Memory Profiling: Profiling is good but it is only efficient per process, to

monitor the memory consumption of an operation.

CPU Profiling: same as the memory profiling.

Let us take an example on a performance problem and how things could be

mistakenly interpreted.

Suppose that we have an application where the user is trying to submit his

information to the application. The customers started to experience some

delays in the response, as a result, the application developer’s starts with

an approach to record the duration of each process to know where the

bottleneck is.

They seek the round trip time of the process, which is not costly, but it

won’t be a straightforward operation, meaning that; if a new business

process is introduced, then there is no direct way to measure it without

doing manipulation on the code.

www.manaraa.com

58

While this approach gives an indication of the response time, it might be a

false one, meaning that a high response time may not be caused by the

operation itself but maybe caused by other operations causing the server to

slow down, thus giving wrong indications and affecting corrective decisions.

As another example, the application could be performing well, but suddenly

with the correct parameters, things could go wrong, it might be either

because of wrong configurations for the memory or for the garbage

collector.

So we need a way to catch the source of the issue, or at least, as in this

case, we need a way to know how the application is behaving without or

even before the customer starts complaining.

The theories and ideas within this work helps in solving the problem which

faces the application developers in efficiently reading the gc log file trying to

discover the patterns of the memory usage/setup and the garbage collector

and finally trying to know if there is a problem or not.

1.32 4.2 Garbage Collection Log Analyzer to the rescue!

After many researches that were done by the research on the best way to

monitor the performance of a Java based web application, many ideas

cross the researcher’s mind.

If No one is complaining, this does not mean that everything is fine.

We were looking and the problems always from the wrong side, we were

reactive to the problem rather than proactive.

www.manaraa.com

59

This approach and way of thinking should be changed, we should be

reactive before any problem rises, an application performance that seems

good may not be actually good, customers who are fine with the

performance of the application do not know what is really going on behind

the scenes, thus, may give wrong indication to the software owners that

things seems fine.

Problems maybe there, but, no one may know about it, and if we needed to

do so and monitor each operation then this is unreasonable and undoable.

Getting out with a feasible approach was very tricky and hard in a way that

the application owners were comfortable with the fact that if customers do

not complain now then this means that everything is normal

From the researcher’s experience, this is not quite right, from his

experience, he learned that the performance issues are like a “time bomb”,

if it’s there and left, it would eventually explode, the only difference here is

that, we did not know about if it’s there, or we did not have the mechanism

to know, until now. So, again there might be an indication to an issue, but

with the right circumstances and parameters, it will appear eventually, then,

it would be a severe issue that needs to be solved right away.

One of the major and most important activities within the life cycle of an

application is garbage collection, where in brief; it’s the process of cleaning

objects no longer needed and maintaining and controlling old objects for

the processes that still needs them.

The collection operation and its details can be documented and reserved

for getting back to it later on; it shows the activities of the garbage collector

and the available/consumed memory at each stage of the collection.

An efficient garbage collection process helps maintaining the application’s

performance by which it does not adds additional cost or complexity to the

application, but also, if there are some issues with the application, it can be

known from the behavior of the garbage collector.

www.manaraa.com

60

But also, many times, the application suffers from performance issues from

incorrect configuration of the application, meaning that the memory that is

configured for the application maybe insufficient so it needs to be

increased.

In other areas, memory that seems insufficient maybe because the memory

usage is inefficient due to memory leak.

Customers or even technical developers may not bother to check for things

that are not very critical, meaning that, as far as that the customer seems

fine, and then nothing should be done.

The researcher supports his ideas and theories with a tool that helps in

solving the problem that faces the application developers in efficiently

reading the gc log file trying to discover the patterns of the memory and the

garbage collector and finally trying to know if there is a problem or not.

1.33 4.3 Reading GC Log file

The problem here is that reading such file is hard; it is very technical and

requires tremendous efforts to analyze and understand.

There are many approaches/tools designed currently, some of them are

mentioned

From the researcher’s experience, we can depend on this file to check the

overall progress of the application in which:

- The rate of collections.

- The pauses duration.

- Memory before collection.

- Memory after collection.

- Object’s life cycle (Its trip between the different areas of the Heap

memory until its death)

- Memory allocation.

www.manaraa.com

61

1.34 4.4 Yesterday’s weather

From the customers’ perspective, the application is considered performing

well until users start experiencing a noticeable slowness within the

application. This theory is correct only from the customer’s point of view,

but when it comes to memory related issues, the same concept might not

hold. Memory issues part of the application’s performance have different

interpretations for the current situation.

Application may be suffering from memory issues but at this point, it is un-

noticeable. Meaning that in many cases, memory problems (if exist)

gradually increase with time until it reach a point where it starts affecting

the performance of the application and finally become noticeable for the

users.

Memory related issues may even be available within for long time within

some applications and may not be noticeable until certain scenarios are

available.

We need a new approach to catch up these issues before a low severity

issues becomes a real severe issues, this work does not intend to predict

memory issues, but it aims to report memory issues with a minimal cost

with high level of correctness. The available tools does not provide a

way to analyze the file, it rather provide some discrete readings that

still the developer need to do an analysis job which might be hard and

time consuming.

The only approach that can give us such readings is the Garbage

Collection Log.

So, this is where the advantage of the garbage collection log lies in which,

if there are misconfigurations for the memory, CPU, the garbage collector

and its activities we can know about it and predict how it will behave with

specific parameters.

www.manaraa.com

62

This shifts the way of solving the performance issues from being corrective

to preventive, from being reactive to proactive.

As said before, other means of performance monitoring and measurements

shows the problem but not the root cause of the problem, making them not

much of a help.

How the new approach helps out from both sides:

 Corrective Actions: With the help of the theories suggested by this

work, the researcher designed a tool based on these theories to find

performance issues if exist and give recommendations on how to

solve them.

 Preventive Actions: It provides precautions in which if it finds

anything that it seems may cause performance issues, it will report

them and give recommendations on how to fix future issues.

 Both are supported also with the use of visual charts to help give the

bottom line of the status of the health of the application.

An important thing to remember here, the tools developed so far that reads

the gc log are designed to illustrate the different outputs of the log visually,

still it is required that a developer study it and analyze the log file, this work

will come up with some theories based on current rules from Oracle and

provide a tool that reads up these outputs and also suggest what should be

done in an automatic way, rather than having developers analyze and

study the log file.

The parameters to configure the settings of the application are many, they

are very critical and important, if not setup correctly could lead to a

struggling application. Because of these reasons, it is high probable that

the application developers would mistake with the configurations of the

application; therefore, we need a tool that is built on the standards to help

figuring out the following:

www.manaraa.com

63

1. Check if there are some missing parameters. (Section 4.4.1)

2. Check if there are some wrong parameters used. (Section 4.4.1)

3. Identify usage of parameters causing performance issues and

suggest the alternatives. (Sections 4.4.2.1 and 4.4.2.2)

4. Identify the application’s health and how it’s performing. (Sections

4.4.2.1 and 4.4.2.2)

In order to for the tool that the researcher has developed to function well

and to read the necessary garbage collection output.

The researcher helps out with his tool to discover if things are set-up right

and the JVM parameters to produce garbage collection log is found.

4.4.1 Prerequisite Parameters

As said, one of the roles of the new tool is to discover if there are some

missing or wrong parameters, let’s start with the most necessary ones and

explain the importance of their existence on the application’s performance.

If necessary parameters are not found, the tool will issue a warning to turn

it on using the below parameters.

Logging Parameters

The new tool cannot work at all without first making sure that there is a

constant log file for the garbage collection process to build up the needed

statistics and findings regarding the performance of the application.

“-Xloggc:c:\gclogFile.vgc -XX:+PrintGCDetails -

XX:+PrintGCTimeStamps”

The first parameter “Xloggc:c:\gclogFile.vgc” is used to

Used to allow logging (writing) the activities of the garbage collection

process on a file so that the new tool could analyze this log.

www.manaraa.com

64

It is highly recommended that in order for the new tool to give a high level

of accuracy, the produced log file should be of a running application for at

least 24 hours of time, this is recommended because the use of the

application cannot be determined against a specific time of the day; most of

the applications have a time where there is a peak usage of the application

throughout the day.

Current approaches reads GC Log file only at application’s crash which

again is reactive rather than proactive, also as said, the available tools

does not provide a way to analyze the file, it rather provide some discrete

readings that still the developer need to do an analysis job which might be

hard and time consuming.

The second one “-XX:+PrintGCDetails” is used to enable logging the

details of the garbage collection process which includes the memory before

and after, different areas of the heap and so on.

The third parameter “-XX: +PrintGCTimeStamps” is used to enable

logging the time and the duration of the collection, this enables us to know

the pausing duration of the collection.

These parameters and other parameters that this work will be explaining

are all defined from within the Java language itself, each has a specific

need.

This is a sample output for one of the garbage collection activities:

4.636: [GC [PSYoungGen: 230400KB->19135KB(268800KB)] 230400KB-

>19135KB(2058752KB), 0.0635710 secs] [Times: user=0.08 sys=0.01,

real=0.06 secs]

So, if we did not have this parameter “Xloggc:c:\gclogFile.vgc” there

would be no such output.

If we did not have this parameter “-XX:+PrintGCDetails”, then details of

the collection.

www.manaraa.com

65

If we did not have this parameter “-XX:+PrintGCTimeStamps”, there

would be no timing information.

1. Machine Classification & Category

The type of the machine is very important for the application and how it

performs over time.

For instance “server” class machines have hardware specifications and

capabilities beyond the normal machines, which means; deploying the

application on a server-class machine have a different effect than deploying

it on a client-class machine.

As we know servers often have multiple processors and the processing

architecture is very different than normal machines in which we gain the

high computing, response and performance.

Why this is being pointed out? It is correct that the application will behave

better when deployed on a server-class machine, but the researcher wants

to point out that the garbage collection process is also affected by such an

addition. The collection process itself will highly perform in general in this

case; the researcher will explain each in details.

For this reason, the researcher highly recommends to make use of such a

configuration that from his own experience with different applications and

different customers, there are good percentage of them forget to make use

of this parameter.

How this work helps out is by finding possible misconfiguration that could

lead to bad performance and generate a hint message on how to fix such

issue.

For instance, if the machine is a server-class machine and the used

property is a “-client” then this will be caught by the tool in order to make

use of the server capabilities.

www.manaraa.com

66

4.4.2 Garbage Collections & Their Types

JVM periodically calls the garbage collector to remove objects that are no

longer needed. It is triggered by the Young & Old spaces.

Whenever the Young space is filled up, a minor garbage collection is

triggered to clean up the “Eden Space” as this work explained previously.

Whenever the Old (Tenured) space is filled up, a major garbage collection

is triggered to clean up the “Old Space”, what also triggers a Full GC

 Calling System.gc()

 Permanent Generation is too low

 Running out of old gen

Let’s start with the minor garbage collection.

Throughout the researcher’s experience with different applications for

different customers, he has found many issues that applications suffer from

due to configurations of garbage collections or even due to miss-

interpretation of the garbage collection log.

4.4.2.1 Minor Garbage Collection Activities to the Rescue

Before drilling into minor collection type, there is something important that

should be known, which is: the life-time of objects.

Objects life-time plays a significant role in the allocation and clean-up

process. For instance, most of the objects tend to have a short-life time

since most of the processes do not span throughout the application’s life-

time.

www.manaraa.com

67

Here is an example about the objects distribution against their life-time.

Figure 27: Objects distribution against time.

Newly created objects are intentionally moved to the Eden area of the

Young space to act as a buffer zone for objects before moving them into

the Old space, in other words, objects that are in the Young space and

survives a specific threshold are then called “Old objects” and hence need

to be moved to the “Old Space”.

As said previously, minor garbage collection occurs when the Eden space

gets fully occupied, so in a process to clean up this area of heap, a minor

garbage collection is triggered.

It is called minor because the Eden space is usually a small space and

requiring cleaning it requires small amount of time.

Minor garbage collections are not very costly, but in the same time it is a

“stop-the-world” operation which requires stopping the execution of all

available threads of the application, only the thread responsible for the

clean-up is left to execute, so it is a costly but a little.

Things could go bad when the number of minor garbage collections is very

high which may result in intolerable “stop-the-world” events, which means

bad performance.

So, what this work will offer is a way to know whether the number of minor

garbage collection activities is considered normal or not.

www.manaraa.com

68

The dilemma that faced this research with investigating and researching

minor garbage collections is that it is normal to have many minor garbage

collections, this is normal, so how could we know in different cases if this is

really normal or not?

So the researcher reached out to the following theory:

GC tuning is not required if: [6]

 Minor GC is executed quickly (nearly within 50 ms).

 Minor GC is not too frequent (nearly not less than 10 seconds).

Such readings are not acceptable unless if the Young space is too small,

other than that, this is a non-acceptable output.

So, using the tool, the researcher will report such findings with what to do

with each

 If Minor GC is taking much time, then we should check the Young

space, if it’s larger than expected (should not exceed 40% of the

Heap) [7], then this is the explanation, hence we need to decrease

the Young space.

If things are set up normally, if the size of the Young space is

reasonable, should try to use the following collection type:

 -XX:+UseParallelGC [8]

This triggers parallel collection for the Young space to decrease the minor

collection execution time. This is only possible if the machine is a server-

class machine. It triggers more than one thread to clean-up the Young

space.

www.manaraa.com

69

 If Minor GC is too frequent, (Not more than once within 10

seconds [6]) then we should check the Young space, if it’s too

small, then this is the explanation, hence we need to increase the

Young space.

If things are set up normally (Young Space within normal range), then

a Heap dump analysis should be done, there could be some objects are

not getting freed-up which could highly mean memory leak could be

present.

4.4.2.2 Major Garbage Collection Activities to the Rescue

As pointed out previously, objects that survived specific minor garbage

collections are then moved to the Old Space.

When Old space fills up, full (Major) garbage collection occurs to free up

the Old space from objects that are no longer referenced.

Tuning for Full GC is required if:

 Full GC is not processed quickly (within 1 second).

 Full GC is frequently executed (multiple times within 5 minutes).

So, if Full GC is too frequent, then, the Old Space should be increased.

 If Full (Major) GC is too frequent (Once per 10 minutes [6]), then

we should check the Old space, if it’s small, then this is the

explanation, hence we need to increase the Old space.

If things are set up normally (Old Space within normal range), then a

Heap dump analysis should be done, there could be some objects are not

getting freed-up which could highly mean memory leak could be present.

 If Full (Major) GC is taking too much time (Not processed in more

than 1 second [6]), then we should check the Old space, if it’s too big,

then this is the explanation, hence we need to decrease the Old

space.

www.manaraa.com

70

If things are set up normally, if the size of the Old space is

reasonable, should try to use one of the following collection types:

 -XX:+UseParallelOldGC [8]

 -XX:+UseConcMarkSweepGC [8]

This triggers parallel collection for the Old space to decrease the major

collection execution time. This is only possible if the machine is a server-

class machine. It triggers more than one thread to clean-up the Old space.

There are two important concepts here to mention that would help

application owners and developers to make up their decisions about the

best collection type to choose.

1.35 4.5 Collection Types based on the need:

The types of collections are divided based on the usage need, classified

as:

Throughput Need:

Meaning that, if we want to improve the performance of the application and

there are many numbers of processors.

It focuses on maximizing the number of tasks done within a specific time,

example:

 The number of transactions completed in a given time.

 The number of jobs that a batch program can complete in an hour.

 The number of database queries that can be completed in an hour.

It does not focus on quick response time.

In order to enable this, use this option alone:

www.manaraa.com

71

-XX:-UseParallelOldGC [9]

It will enable Parallel in Old & Young.

If we wish to enable Parallel collection for only the Young generation, we

can use this option:

-XX:-UseParallelGC [9]

Beside either of the mentioned parameters, we can use the following option

that triggers the number of threads to work in parallel to do the collection:

-XX:ParallelGCThreads=<desired number> [8]

Responsiveness Need (Low Pause Need):

This refers or focuses on how quickly the application responds to a specific

request, examples:

 How quickly a desktop UI responds to an event

 How fast a website returns a page

 How fast a database query is returned

These types of applications do not tolerate large pause times. Usually this

is used on machines with two or more processors in order to share the

resources (processor threads) with the garbage collector so that in

order to omit pauses (stop-the-world).

In another words, in order to clean the Old space with minimized pauses, it

uses a separate garbage collector thread to run side by side with the

applications threads, thus the application does not pause for garbage

collection.

www.manaraa.com

72

To enable this type of collection, use the following option:

-XX: +UseConcMarkSweepGC [9] And

-XX:ParallelCMSThreads=n [10] If this is used, be sure to use the

following parameter as well:

-XX: +CMSClassUnloadingEnabled [11]

4.6 Object’s Lifetime

Objects like anything in life, has a lifetime that imposes a challenge on the

performance of the application.

An object is created when it is needed and destroyed when no longer

needed. As we learned that in Java, the developer has nothing to do with

destroying objects and cleaning them from memory. As stated before it’s

the role of the JVM to manage the instantiation and the cleanup processes

for objects.

Tenuring/Promotion is the process for moving objects from the Young

space to the Old space.

This is normal during the lifetime of the objects in memory, objects that

survives multiple garbage collections are finally promoted/tenured from the

Young space to the old space. What is not considered normal is moving

these objects to the Old space earlier than expected, hence producing an

issue.

More already stated, collecting objects from Old space is a more costly

operation than collecting objects from the Young space, because almost

always Old space is larger, hence reducing the Old space collection as

much as possible means lowering pauses time, which as a result means,

better application’s performance.

How does the JVM do it?

www.manaraa.com

73

Each object that survives a minor collection, meaning that; when an object

in the Young space survives minor collection, its age is increased by one.

According to a specific threshold, when an object reaches the maximum

age threshold, it is then promoted /tenured to the Old/Tenured space.

The age threshold is called “Tenuring Threshold” and the maximum

value is called “Maximum Tenuring Threshold”.

In order to print out the Tenuring distribution for the available objects, the

following parameter should be added.

-XX:+PrintTenuringDistribution

Let’s check a small part of the GC log file that demonstrates the objects

distribution against their ages:

Desired survivor size 75497472 bytes, new threshold 1 (max 15)

 - age 1: 19321624 bytes, 19321624 total

 - age 2: 79376 bytes, 19401000 total

 - age 3: 2904256 bytes, 22305256 total

This means that the current tenuring threshold is 1, meaning first cycle of

gc in the Young space.

It shows objects distribution against their age.

Desired survivor space is 75 MB.

The available objects size in this cycle of collection is nearly: 23 MB.

Each time the Survivor space is emptied, the threshold is reset.

For instance, the desired survivor space is 75MB and the current usage is

23MB, meaning that, the Survivor is not fully occupied, hence, promotion to

the old space is not needed

www.manaraa.com

74

 and still they can stay in Survivor space.

When the next minor gc is triggered, upon the Eden space being filled up,

the minor gc scans over the Young space. If the objects in the Survivor

space are still referenced, then they would stay in the Survivor space but

this time increasing their age. So the next output would be:

Desired survivor size 75497472 bytes, new threshold 2 (max 15)

- age 1: 98376 bytes, 19321624 total

- age 2: 19321624 bytes, 19401000 total

- age 3: 79376 bytes, 22305256 total

 - age 4: 2904256 bytes, 22305256 total

As we can notice, this is the next round (next minor gc) as indicated by

“new threshold 2” still the total size of all objects of all ages did not reach

the desired survivor size, meaning that objects in the survivor space still

won’t be promoted to the Tenured space.

If the following appeared in the log directly after the previous lines, it means

that objects are moved out of the Survivor space and that they were

prematurely promoted, which is a bad thing.

Desired survivor size 75497472 bytes, new threshold 1 (max 15)

- age 1: 48376 bytes, 19321624 total

- age 2: 12321624 bytes, 19401000 total

As it is shown, a new cycle started, none of the objects found in the

previous collection exist anymore, this means when objects are

prematurely promoted, the Tenured space will be filling more rapidly,

hence, more major garbage collection is going to happen.

Solution to this issue:

www.manaraa.com

75

- Increase Young space.

- Resize Survivor spaces to allow more objects to survive in the

young space.

If the Young space is already within normal range, then it is recommended

increasing the Survivor space.

This is done by decreasing the survivor ratio.

Default value for SurvivorRatio is 8, lowering it would increase the

Survivor space, hence, avoiding survivor space overflow which as a result

lead to premature promotion.

Premature promotion should be minimized as possible since otherwise it

could cause a Full garbage collection, which is a stop-the-world event

which we are trying to minimize as possible.

The tool would catch premature promotion cases and recommend what

should be done.

1.36 4.7 Memory Leaks

It is one of the most critical and toughest topics among all issues.

What is a memory leak?

It means that the JVM failed over many garbage collections to reclaim back

memory used by objects that are no longer used or referenced.

Meaning that memory that was allocated for objects created to accomplish

certain process that was done were not released because other objects are

still mistakenly referencing these objects, so the garbage collector decides

to skip these objects. [12]

How bad is that?

www.manaraa.com

76

Leaks eat up memory very quickly resulting finally in an “Out of Memory”

error which finally leads up to an application crash.

As said previously, crashes caused by an “Out of Memory” error are very

general, especially when the specific error is Heap error, as said before

could be either because:

- Insufficient Memory

- Inefficient use of memory (such as memory leak)

The Out of memory error caused by a memory leak is categorized under

“Inefficient use of memory”, if this is the case, there is nothing we can do

about it but to investigate the root cause and finally, fixing the code itself.

So, if there is no tuning that could be done for this, why the researcher is

raising such an issue?

Simply because one of the toughest jobs is to find out if an out of memory

error is because of a memory leak or not, this is where this work helps out,

reading a graph to try to know if there is a memory leak or not, is a hard

task to do, so the new approach as well as the tool will facilitate this

decision on the developers.

How to discover?

This research came up with some simple theories to solve this dilemma.

A memory leak is a failed attempt for the garbage collector to free up the

memory reserved over many collection processes.

What is expected from a full garbage collection process is to free up some

memory that can be used for other processes, so if it failed to do that, then

it’s a memory leak.

www.manaraa.com

77

Actually memory leaks are the most challenging problems among memory

issues, there are many patterns for memory leak. This study only aims to

find the most common memory leak type. It is a very complex task to

identify other types of memory leak from a garbage collection log alone.

As stated previously, the best approach to detect and track a memory leak

is analyzing a Heap dump of the memory.

Why Memory Leak is related to “Old Space” of the Heap?

According to Oracle, most objects are shortly lived, meaning that they only stay a little time

within the memory, only small portion of objects live a long time [13]. This is a normal or

expected behavior for an application, most of the applications are operation based, meaning that,

a customer who is requesting a specific service from a Forex-Exchange application needs for

example to get the current “Gold” rate world-wide. This is an example of a single operation that

when triggered will need some objects to be executed, once done, objects are no longer needed,

this is an example of what is called a Stateless operation (Stateless objects).

On the other hand, a customer is using banking services from the Internet

banking application, once logged in, customer may choose to do several

operations within the same session that he is using originally, deposit

operation, then maybe money transfer, followed by paying some bills

online. These types of operations simulates the real need for state-full

objects, were some objects that may represent as in this example the

customer’s information, needs to live for the long-term.

From this example and from the reference below, the mostly common or

typical object’s pattern is to have Young objects much more than Old

Objects, i.e.: objects which lives shortly much greater than objects which

lives long time.

What do this have to do with Memory Leak is that, since a leak is a

continuous failed attempt to free-up some memory from the Old space of

the Heap memory, and since Old space of the Heap only contains Old

Objects (objects that have been around for long time) then for this reason,

a leak is related only to old objects.

www.manaraa.com

78

When objects are considered “OLD”?

According to Oracle, objects are considered old if they survived a certain

number (threshold) of minor garbage collections, typically 15, meaning that

objects which survived 15 minor garbage collections are then moved to the

Old space and hence considered Old objects. [14]

This is why the main goal is to focus on Old space of the Heap to detect

memory leaks and not to focus on minor garbage collections.

When minor garbage collection is triggered, the following occurs:

- Eden Space is emptied.

- One of the Survivor spaces is empty.

- With this, Young space always holds short lived objects.

When Full garbage collection is triggered:

- Old Objects within the Old space that are not referenced

anymore are removed from the Old space.

Rule 1:

- Full Garbage collections should be minimized, since most of the

objects are shortly lived, Young space is always smaller than the

Old space. For this reason, collecting the Old space is more

costly.

As a simple solution, in order to avoid Full garbage collections, we need to

make sure that the Old space is always not fully utilized. One may say is to

increase Heap memory and as a result, the Old space. This is a non-

feasible/applicable solution, it only postpone the issue not solve it.

This takes us to the following question, why Full garbage collections are

triggered?

www.manaraa.com

79

- A process that requires much memory and there is no available

space for this allocation process.

- An un-noticeable problem in the application’s code that causes

an un-noticeable leak in the Heap memory.

Memory leaks are not always related to Full Garbage Collection, a leak

may happen without triggering any full gc. So the most appropriate way of

detecting a leak is reporting the difference between the initial memory per

day (at the start and end of each day).

Example of Application with Memory Leak:

Figure 28 illustrates the memory usage with time for an application, with

code snippet attached below. As the code snippet shows, the application

gets some resources without releasing them, with each resource, the

reserved memory cannot for the resource cannot be released since the link

to the resource is not dropped, therefore, memory for each resource will be

reserved forever.

 public void processReports() {

try {

 List reportsIds = getAllReportsIdsFromDB();

www.manaraa.com

80

 while (dao.next()) {

 for(Iterator iter = reportsIds.iterator(); iter.hasNext();)

 Integer reportId = (Integer) iter.next();

 Report report = new Report(reportId)

 report.open();

 // do things

 // Did not Close Report

} catch (Exception e) {

 e.printStackTrace();

}}

Figure 28 - Possible Heap Memory Leak

www.manaraa.com

81

Example of Application with no Memory Leak:

On the other hand, the same code but this time with releasing the open

resources.

public void processReports() { List reportsIds =

getAllReportsIdsFromDB();

 while (dao.next()) {

 for(Iterator iter = reportsIds.iterator(); iter.hasNext();)

 Integer reportId = (Integer) iter.next();

 Report report = new Report(reportId)

 report.open();

 // do things

 report.close(); // closed resources

} catch (Exception e) {

 e.printStackTrace();

Figure 29 - Reclaimable Heap Memory

www.manaraa.com

82

A detailed report (to be developed as a future work) will show more

information regarding:

- How much memory (un-released) were used over a full day

- How long reclaiming memory did take.

From the definition of the garbage collection provided from Oracle itself,

which is garbage collection is an automatic process for memory de-

allocation of memory which is no longer used [15].

 So, if memory before collection is the same or greater than memory after

collection then actually the garbage collector failed to do the job, hence it’s

a memory leak.

Memory before GC >= Memory after GC

But this alone is not sufficient, because there could be some freeing

occurred that are not relevant for the objects that are not referenced and

are not the reason behind the leak.

So we can say now that a memory leak is present if:

Memory before GC >= Memory after GC

 OR

Memory after GC is less than Memory after GC by a small portion.

In order to have a better analysis, memory should be analyzed more than

once for multiple garbage collections, otherwise, the analysis could be

misleading, meaning that, it could be a task that consumes large memory

and it is going to release it after it is done, which mean no memory leak is

present.

www.manaraa.com

83

That is the very simple scenario for detecting again a very simple form of

garbage collection, but actually this is not enough. Actually any heap

memory reserved over time even after the application processes are done

should be compared against the Heap memory reserved before these

processes start. This amount of memory should be reported and analyzed

with the correct tool (Heap Dump).

Report always if:

Initial Memory after GC > New Initial Memory after GC

This work votes for the second approach, reporting the difference between

the Old Initial Heap sizes before the first trigger of the first garbage

collection of any process compared to the new initial heap sizes after the

last gc for the same process.

What to do?

As said, nothing much, if a leak is present then analyzing a Heap Dump of

the memory is the only option to know which objects caused this leaking

issue and fix the code causing this accordingly, which is also out of this

research scope.

www.manaraa.com

84

1.37 4.8 Heap Size

Very critical topic that is also tricky, a question that always application

developers and administrators ask:

- Are we allocating enough Heap size for the application?

A tough question that was simplified with some simple theories after many

investigations which is as follows:

The researcher will check the Average Heap size usage, taking an

indication for the maximum amount of Heap.

This is the hypothesis:

If Heap usage is almost always full (meaning that almost always the Heap

size is fully occupied) then it is a 100% that we need to increase the Heap

size, i.e.: Heap is not sufficient for such application. Meaning that: we

should increase the Heap in general, not specific areas of Heap.

This might be tricky, a Heap might be overused or the allocated Heap is

almost always used because of a memory leak, that’s why this theory is

only valid if there is no memory leak.

This is made sure to be included in the tool, before giving users indication if

an increase in Heap size is needed, will check first if there is a memory

leak.

If there is a memory leak, then it’s a 50% probability that we need to

increase the Heap size with an indication that even the 50% is wrong, so

solving the memory leak have a higher priority over increasing Heap size

because a memory leak could lead to wrong indications, hence wrong

decisions.

www.manaraa.com

85

As always, this will be suggested all by the tool which reduces the

complexity of the analysis & investigation, hence saving time.

Old & Young sizes

Old & Young sizes suggestions and recommendations are added

previously as part of the major and minor garbage collection sections.

1.38 4.9 Permanent Generation Space

It is very important to maintain a sufficient space for the permanent

generation because insufficient space could lead up to an Out of memory

error, hence a crash of the application.

It is very beneficial to catch up such issues before happening to see if there

could be a possibility of a performance issue or not.

If the amount of memory allocated for the Permanent space is almost

always the same as the amount of memory used for the Permanent space,

then it is time to increase the space of this generation.

Almost always means: either a full usage of the permanent space or almost

full usage.

1.39 4.10 Implicit & Explicit GC

Garbage collection in Java is an implicit process, meaning that it is

triggered by the JVM itself whenever it sees it appropriate.

The question here is why? Why would it be an automatic operation that the

developer has nothing to do with it?

Simply because the cleaning process of objects no longer needed is not left

to the developer, so it would make no sense to leave the triggering of the

process in the hands of the developer.

www.manaraa.com

86

Saying that, Java has provided a method (function) for the developer that it

seems that it instructs the JVM to run the garbage collection process, at the

same time, as it says in the documentation of this function, there is nothing

guaranteed that the JVM will initiate the collection process accordingly. It

only means that the JVM will take the request into consideration, but that is

not certain.

Function is: System.gc()

This leads us to the following conclusion:

The collection process is implicit operation; developer has nothing to do

with it.

But why this is topic is being brought up? That is because it appeared that

this method has a very bad side-effect on the performance of the

application, meaning that, if this method was called from the application’s

code, it will result in tremendous performance issues, so it’s highly

recommended that we prevent such invocations for this method.

The garbage collection log file will be used to check if there is any call to

this function and give a hint to remove it from the code, or as a better

quicker solution to disable such invocations if present.

The parameter (option) to disable such calls is:

-XX:+DisableExplicitGC

www.manaraa.com

87

Throughput

It refers to the percentage of total time that the garbage collection process

is not taking place, for instance, 70% throughput implies that the garbage

collector consumes 30% of the JVM time.

1.40 4.11 Summary of Theories/Algorithms:

The below algorithms were extracted from different references (added

below) in order to form up a clear analysis (algorithm) to track memory

issues automatically. Other rules are basic rules extracted also from

Oracle, it must be noted that the below algorithms were discrete data, this

work adds up these rules in a systematic way (like a flow diagram) and

then interpreted into a tool to detect memory issues.

Major rule:

Garbage Collection stops the execution of the application, Major garbage

collection takes more time than the Minor garbage collection since Tenured

(Old space) is bigger than the Young space as discussed previously in this

chapter.

- Detects high Minor GC pause time:

1. If more than 50ms, the tool would trigger the need to tune to lower the

collection time of the Minor garbage collection. The tool logs if the size of

the Young space should be minimized accordingly to lower the collection

time.

2. If size greater than 40% of the Heap size, a recommendation to keep the

Young space below 40% of the Heap [7].

3. If the size matches point 2 criteria, then the following parameter should

be used: -XX:+UseParallelGC [8]

www.manaraa.com

88

- Detects High rate of Minor Garbage Collections:

Minor Collections should not be too frequent, once per 10 seconds [6].

1. If more than once within 10 seconds, the tool would trigger the need to

tune the number of minor collections to minimize the application’s pause

time, hence, a better user experience (faster response)

- Detects High Frequency of Major GC:

1. If more than once 10 minutes, the tool would trigger the need to tune to

lower the number of Major garbage collections. The tool then would

recommend increasing the “Old space” size if it’s lower than the

recommended, below 60% of the Heap size. [7]

2. At this point, if things are set-up as expected, and still we have multiple

Full garbage collections within 10 minutes, then a high possibility of

Memory leak is available, hence, what should be done is to analyze the

heap dump.

- Detects High Full Garbage Collection Time:

1. If more than one second, then the tool would trigger the need to tune to

lower the collection time to be below 1 second. If the size of the Old space

is more than 60% of the Heap size, then the tool would recommend

lowering this size to be less than 60%.

2. If things are as expected in point 1, then the tool would trigger the need

to use the following parameters:

 -XX:+UseParallelOldGC [8]

 -XX:+UseConcMarkSweepGC [8]

If application seeks throughput need, then the tool would trigger the need to

use the following flag:

 -XX:-UseParallelOldGC [9]

www.manaraa.com

89

And

 -XX:-UseParallelOldGC [9] for the Young Space.

- Detects Premature Promotion:

1. If Premature Promotion is present, objects being promoted (moved) to

the Old space before they reach the expected threshold, then the tool

would trigger the need to tune by increasing the Eden space to prevent this

or by increasing the tenuring threshold. Premature Promotion triggers

Major garbage collection, which stops/freezes the application’s threads.

[16]

- Detects Missing Key Parameters:

The tool triggers an attention for the required parameters needed to best

tune the application’s performance as illustrated in section 5.2.

- Detects Explicit Garbage Collection:

The tool triggers the need to remove the explicit garbage collection calls [6]

by adding the following parameter to ignore explicit GC calls:

 -XX:+DisableExplicitGC

- Report the allocation against used Heap sizes for (Young, Old and

Permanent generation space).

www.manaraa.com

90

Chapter 5 – The Tool (GC Log Analyzer)

1.41 5.1 Chapter Introduction -About the Tool

The new tool is not just a software program, it’s a new approach to

enforces the theories and problems raised by the researcher in the thesis

with a practical side that helps solving issues we have nowadays in the

performance sector of applications

The gc log file has been neglected despite its importance because of the

complexity of the output and because of the known approach for solving

performance issues that depended on being reactive to any issue rather

than being proactive.

It will extract the below information from the garbage collection log which is

very beneficial in tuning the memory usage of any application:

- Free Virtual against Physical memory.

- Average usage against allocation.

- Young, Old and Permanent generations usage.

- Young, Old and Permanent generations allocation.

- Garbage Collection Distribution (Full, Minor and Explicit).

- Young GC Pause Time.

- Full GC Pause Time.

- Heap Usage in details.

- If memory leak available or not.

- Young space detailed information.

- Promotion Information.

- Garbage collections with different types in details.

www.manaraa.com

91

Figure 30 - GC Log Analyzer brief description

Figure 30 gives a brief introduction about the tool, what is the tool, on what

platform it operates, the objectives of the tool and finally the need and the

importance of it.

Depending on the activities of the “Garbage collector”, it could tell us a lot

about the health of the application, from the memory availability before and

after the collection, the number of collections, the type of collections, the

lifecycle of objects between the different areas of the memory and finally

whether that the issues occurred as a result of a bad code or design of the

application.

Down the screen, we can find 4 links for this tool:

www.manaraa.com

92

- Prerequisites & Hints: It explains in brief what setup or

configuration is needed to produce a beneficial log file that the

tool could depend on to give the most accurate and beneficial

results that we can use to build up our decisions as a result.

- Memory Analysis Information: With the use of charts, this

module shows the different usage of the memory by the

application and the different segments of the memory against

their setup and average usage.

- Garbage Collection Analysis Information: Again with the help

of charts, it shows the activities of the garbage collector in

general regarding the number of collections (how many pauses

the application experienced) and for how long these pauses

stopped the application from running (which maybe from

milliseconds to multiple seconds).

- Recommendations & Hints: One of the most important

aspects of the tool, which does not only represent information as

charts, but also point to areas where the application seems to

suffer and give recommendations and hints on how to tackle

these issues.

www.manaraa.com

93

1.42 5.2 Prerequisites & Hints

Figure 31 : GC Log Usage Prerequisites

In Figure 31, the tool mentions the prerequisites of using such tool, the

correct setup and parameters that it operates within and when to analyze

the gc log.

As stated in the figure, the tool is effective to analyze a GC log file that is

produced from a production environment where real customers use the

application with real scenarios.

www.manaraa.com

94

This is important because, when application owners deliver the

product/application to customers they test and verify it based on

internal/local testing, which is not how things really go on at the customer’s

side.

It is also important that the file should be left to have as much log as

possible of a working day at the customer side, not excluding peak hours.

1.43 5.3 Memory Analysis Information

5.3.1 Virtual Memory against Free Physical Memory

www.manaraa.com

95

Figure 32: GC Log – Memory Analysis – Virtual against Memory

Figure 32 shows the first reading from the GC log file after being parsed by

the new tool.

The first tab in the figure shows what the application is using memory

against what is really available as free physical memory within the

machine.

This is an important information because administrators needs sometime to

know about the status of their resources, meaning that, usually applications

and their database reside either on a separate server or even at same

server, but for a correct setup, they should not be on a server that is shared

for other services/applications, so knowing how much the resources

dedicated for the specific application could be extended is a useful

information.

An important thing to notice here is that; having the readings ready as

represented as a chart is a great thing, as it may seems, someone may

falsely drive by this reading, that’s why we need a hint here to inform the

administrator that if there is a memory leak, then it should be solved first

before taking any further decision, memory leak means that the memory

resource is inefficiently used, thus even if there is a decent amount of free

memory it would be a mistake to increase the application’s memory before

solving the leak first.

As the figure shows, the “Free Physical Memory” indicates the available

“non-used” memory within the server and can be allocated for the

application. If a memory leak is not fund, then it’s an opportunity to increase

the available memory for the application.

www.manaraa.com

96

5.3.2 Heap Average against Allocation

Figure 33 represents the average Heap Usage in Megabytes against the

maximum allocated Heap memory.

This gives us an indication if the allocated memory for the application is

sufficient during the life cycle of the application.

Figure 33: GC Log – Memory Analysis – Average Usage against allocation

www.manaraa.com

97

A high average memory usage indicates that the allocated memory might

not be sufficient for the application and sooner or later we need to increase

it.

Again, if the average usage is not being affected by a memory leak, then it

is as is seems by the chart, an increase for the available (allocate) heap

memory is needed.

Allocation refers to the memory available for usage by the application but

might not be fully used, a memory that is ready and dedicated for the

application.

5.3.3 Young, Tenured and Permanent generations Allocations

As we learned from previous figure, we saw the average heap usage

overall, here we have the ability to know how much memory each segment

of the heap consumes.

The reading of the Young generation is not quite important because, almost

always the Young space would be fully used since objects that are created

are allocated to the Young space first and when fully occupied, they are

moved to the Old space.

So it is a very common case that the Young space is almost always mostly

used, as for the Old space; it is not always the case.

www.manaraa.com

98

Permanent Generation is where classes’ objects are stored, they are

considered permanent since they live throughout the application life-time.

Figure 34: GC Log – Memory Analysis – Young against Old against Permanent generation

From these readings, we can know the percentage of the Young against

Old, if within acceptable range or not.

www.manaraa.com

99

5.3.4 Young/Old & Permanent Generations usage

Figure 35: GC Log – Memory Analysis – Young against Old against Permanent generation usage.

www.manaraa.com

100

Figure 35 shows a chart that represents the different areas of the Java

Heap memory against their allocation. As stated before, the Java Heap is

divided into 3 main areas:

 Young Space.

 Old Space.

 Permanent Generation Space.

From these readings, we can know which among other areas reserves

more memory.

The final figure of the Memory analysis shows the allocated memory for the

different parts of the Heap memory, comparing to the previous chart, we

can know the allocation for each area in the Heap memory against the

average usage.

www.manaraa.com

101

1.44 5.4 Garbage Collection Analysis Information

5.4.1 Garbage Collection Distribution

Figure 36 shows the distribution of the different types of garbage

collections:

Figure 36: GC Log – Garbage Collection Analysis – Collection Distribution

www.manaraa.com

102

Garbage Collectors can be divided into 2 types:

- Full GC: A collector that works on the Old space area of the

heap.

- Minor GC: A collector that works on the Young space area of the

heap.

It also report garbage collections as a result of being explicitly called from

the code which has a bad impact on the performance.

It would be non-beneficial making use of these numbers because we need

to know another detail which is; the frequency of these collections of both

types. Meaning that even if the number of collections is let’s say 100, but in

respect to what? They would be a bottleneck only if they are too frequent;

this detail is found under the “Recommendations and hints” section.

5.4.2 Young GC Pause Time

The chart within Figure 37 illustrates the pause duration in average caused

by the minor garbage collector.

Minor garbage collectors are not expected to be costly collectors since they

work on a small area of the heap (the Young) which should be usually

smaller than the Old space.

The chart shows the average pause caused by the minor gc, anything

below 0.5 seconds is acceptable.

www.manaraa.com

103

Figure 37: GC Log – Garbage Collection Analysis – Young GC Pause

www.manaraa.com

104

5.4.3 Full GC Pause Time

The chart in figure 38 shows the pause duration caused by the Full

garbage collector which are expected to take more time than minor

garbage collectors because they work on an area larger than the Young

space.

Figure 38: GC Log – Garbage Collection Analysis – Old GC Pause

www.manaraa.com

105

1.45 5.5 Recommendations & Hints

5.5.1 Heap Usage Details

Figure 39: GC Log – Recommendations & Hints – Heap Info

www.manaraa.com

106

Figure 39 shows the Heap usage info:

- Initial Heap size: It represents the initial heap that the application

started with.

- Average Heap Usage.

- Maximum Heap Usage.

What we can benefit here is that, if the initial Heap is a lot lower than the

average heap usage, then the Initial Heap size should be increased a lot or

should be set to the same as the maximum reserved heap size.

It also shows that the Heap memory seems insufficient and we might need

to increase it, but as shown, it checks first if there is a memory leak, if so, it

should be solved first before really increasing the heap.

5.5.2 Premature Promotion Information

www.manaraa.com

107

Figure 40: GC Log – Recommendations & Hints – Promotion Information

Figure 38 illustrates the premature promotion information of objects. As we

know, promotion is the process of moving objects from the Young space to

the tenured space, which is a normal thing.

www.manaraa.com

108

What is not normal is the premature promotion where we should minimize it

as possible.

Premature promotion is when objects are moved from the Young space to

the tenured space earlier than expected.

There is a specific threshold as discussed earlier by which objects are

allowed to be tenured to the Tenured space, this is important because we

want to minimize the rate of moving objects from the Young space to the

Old space to minimize the Full garbage collection because it is a costly

operation.

As shown it contains the premature promotion percentage which

represents the rate of premature promotions against the total number of

promotions.

It is also recommended to solve memory leaks before trying to solve

premature promotion, because a memory leak could be one of the main

causes for the leak.

If no memory leak is found, then the problem can be solved either:

- The Eden/Survivor spaces maybe too small.

- The max tenuring threshold may need to be increased.

www.manaraa.com

109

5.5.3 Full GC Information

Figure 41: GC Log – Recommendations & Hints – Full GCs Information

www.manaraa.com

110

Figure 39 is very important where it illustrates detailed information about

the status of the different types of garbage collectors which are FULL and

Minor.

As shown, it informs us with the following:

- Total number of Full garbage collections.

This implies if there are many garbage collections or not, still this does not

mean a lot because it depends on the duration within the collection is

happening.

- Implies if there is any frequent garbage collections or not.

This is important since it informs us if we have to worry about the number

of collections, i.e.: whether the collections are too frequent or not. It could

imply a lot, like if the application’s time is being spent in collection or not.

- The Average pause time of the Full garbage collections.

Implies the average pause time of the application, i.e.: the average pause

time of the application not being spent for the application threads itself.

- The Highest pause time of Full garbage collections.

Implies the highest pause time of Full garbage collection, anything more

than one second is not acceptable.

www.manaraa.com

111

5.5.4 Minor GCs

Figure 42 illustrates the Minor garbage collection information as the Full

Garbage collection information in the previous page.

Figure 42: GC Log – Minor GCs Details

The only difference here is what is acceptable for minor garbage collection

is not acceptable for major (Full) garbage collection.

www.manaraa.com

112

5.5.5 Memory Leak

Figure 43 shows if there is a memory leak or not, if there is, then nothing

that this tool could do about, it has done a sufficient job figuring out if there

is a leak or not.

Figure 43: GC Log – Memory Leak Information

Memory leaks are usually hard to discover.

The approach that was followed to discover a memory leak:

Scan all garbage collections of type “Full” and check the memory before

and after the collection.

To figure out a memory leak, we should depend on:

www.manaraa.com

113

- Memory Freed amount.

- Number of Full GCs.

- Amount of memory freed.

- The number of occurrences of possible memory leak.

Consider the following:

Memory used before leak is: preUsedMemory

Memory used after leak is: postUsedMemory

- If the postUsedMemory is greater than or equal to the

preUsedMemory >> Possible Leak, because what is expected

from the Full garbage collection when it runs is to free a decent

amount of memory. If memory was not freed after the Full GC or

it did increase after it, then this could mean a possible memory

leak, still may not be.

- If memory was freed but with a very small amount. Meaning

that, objects that are not related to the leak were released only.

- The above hypotheses are only valid if a number of such

readings occur. A single occurrence does not indicate a memory

leak.

Discovering if a memory leak is found or not is half the way solving

performance problems since they were hard to discover, it is important to

solve because if a leak is found, if any process that needs a high memory

will spike the memory in use and as a result would cause a system crash.

The next step after finding a leak is to analyze which objects are causing

this, which is out of this tool’s league (Since this is an offline tool).

www.manaraa.com

114

5.5.6 Young Space Info

Figure 44: GC Log – Young Space Information

Figure 44 illustrates the Young space detailed information:

- Survivor Size.

- Eden Size.

- Total Young space size.

www.manaraa.com

115

The small size of Survivor size could result in premature promotion which

as a result increases the possibility of FULL garbage collections, which as

a result, suspends the application for more time.

5.5.7 Explicit GC

Figure 45: GC Log – Explicit GC Information

Figure 45 shows if there is an explicit garbage collection which causes Full

GCs. Explicit GCs should be avoided.

www.manaraa.com

116

5.5.8 Responsiveness Need

Figure 46: GC Log – Responsiveness Need

Figure 46 illustrates how to fulfill the responsiveness need of an

application. As hints and guidelines with examples for real cases where the

responsiveness is needed.

www.manaraa.com

117

5.5.9 Throughput Need

Figure 47: GC Log – Throughput Need

Figure 47 illustrates how to fulfill the throughput need of an application. As

hints and guidelines with examples for real cases where the throughput is

needed.

www.manaraa.com

118

1.46 5.6 Tool Technical Details

Used tools/technologies:

- The used technology to implement such tool was the latest Java

version which is 1.6.

- JSF based implementation; PrimeFaces was used to draw

charts.

- Java I/O API’s to read and parse information.

- Gcviewer API’s that reads certain information from the gc log.

- Eclipse IDE for Java as the development.

- Java JMX for performance readings.

1.47 5.7 Samples from code

 /**

 * This method is used to find possible indications of memory leak, then

these readings

 * will be analyzed to check if the pattern indicates a memory leak.

 * @return

 */

 public List getPossibleMemoryLeaks() {

 List possibleLeaks = new LinkedList();

www.manaraa.com

119

 for (Iterator iterator = gcModel.getGCEvents();

iterator.hasNext();) {

 GCEvent event = (GCEvent) iterator.next();

 if (!event.isFull()) {

 continue;

 }

 int preUsed = event.getPreUsed();

 int postUsed = event.getPostUsed();

 if((postUsed >= preUsed) || isPostLessByLittle(preUsed,

postUsed)) {

 possibleLeaks.add(true);

 } else {

 possibleLeaks.add(false);

 }

 }

 return possibleLeaks;

 /**

 *

www.manaraa.com

120

 * @return

 */

 public boolean isExplicitGCDisabled() {

 RuntimeMXBean runtimeMxBean =

ManagementFactory.getRuntimeMXBean();

 List<String> arguments = runtimeMxBean.getInputArguments();

 StringBuilder text = new StringBuilder();

 for (Iterator iterator = arguments.iterator(); iterator.hasNext();) {

 String string = (String) iterator.next();

 text.append(string);

 }

 return SystemInfoUtility

 .isParameterExists(text.toString(), "-XX:+DisableExplicitGC");

 }

 }

www.manaraa.com

121

 /**

 *

 * @return

 */

 public boolean isFullGCsTooFrequent() {

 Date firstCollectionTime = null;

 int numberOfGcs = 0;

 List possibleTooFrequentMinorGCsList = new ArrayList();

 for (Iterator iterator = gcModel.getFullGCEvents();

iterator.hasNext();) {

 GCEvent event = (GCEvent) iterator.next();

 numberOfGcs++;

 if (firstCollectionTime == null) {

 firstCollectionTime = event.getDatestamp();

 continue;

 }

 Date currentGCCollectionTime = event.getDatestamp();

 if (getDateDifference(firstCollectionTime,

currentGCCollectionTime) < 10) {

 possibleTooFrequentMinorGCsList.add(1);

 }

www.manaraa.com

122

 continue;

 }

 if (((possibleTooFrequentMinorGCsList.size() / numberOfGcs) *

100) >= 60) {

 // most of the garbage collections are very frequent.. so this

is

 // not normal

 return true;

 }

 return false;

 }

www.manaraa.com

123

public int getMaxTenuringThreshold() {

 try {

 BufferedReader br = new BufferedReader(new

FileReader(file));

 String line = br.readLine();

 while (line != null) {

 if (line.contains("Desired survivor size")) {

 int indexOfSize = line.indexOf("max");

 int indexOfBytes = line.indexOf(")");

 String s1 = line.substring(indexOfSize + 3,

indexOfBytes);

 return (Integer.valueOf(s1.trim()));

 }

 line = br.readLine();

 }

www.manaraa.com

124

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return -1;

 }

 /**

 *

 * @param gcModel

 * @return

 */

 public boolean shouldSetMaxAndMinHeapSame(GCModel

gcModel) {

 double averageHeapAllocated =

gcModel.getHeapAllocatedSizes().average();

 double maxHeapAllocatedSize =

gcModel.getHeapAllocatedSizes().getMax();

 double minHeapAllocatedSize =

gcModel.getHeapAllocatedSizes().getMin();

www.manaraa.com

125

 double maxAvgDifference = maxHeapAllocatedSize -

averageHeapAllocated;

 double minAvgDifference = averageHeapAllocated -

minHeapAllocatedSize;

 if ((minAvgDifference < 0) || (maxAvgDifference >

minAvgDifference)) {

 return false;

 }

 return true;

 }

www.manaraa.com

126

Chapter Six - Conclusions and Future Work

To summarize up what this work has presented:

 Detecting memory related issues during the life-time of the

application in a very simple way.

 Provided a tool which helps targeting and solving memory issues by

which:

1. Provide an efficient/easy way to know performance issues

related to memory before it turns out to be a show-

stopper issue.

2. Provide a decent way to know in details, how the garbage

collector is performing.

3. Provide a way to tune garbage collection performance.

4. Provide a way to know if there is a memory leak, even if

the application’s performance seems fine.

Up to this point, the researcher believes that this tool is good

and sufficient for now, still could bare a number of

modifications and additions to add up more features.

As an enhancement, adding the ability to analyze memory based on a full

working business day. Doing so enables analyzing the performance of an

application for a specific day in order to get more accurate readings.

As another addition would be to add up the system’s admin email to enable

the tool to send the log on a daily basis to analyze the performance of the

customer’s environment, even if the users are not complaining from

anything.

www.manaraa.com

127

What the tool is used to tackle is memory related issues, now in order to

target most of the performance issues, Thread analyzer could be

developed to provide features not available in the current thread dump

analysis tools, by this, most of the performance issues are covered that are

of type: Memory or CPU related.

Finally, the methodologies presented in this work shifts our way of

approaching performance issues to a new level to be more proactive rather

than reactive.

Rather than waiting for a serious/severe performance issues to come up,

this new approach help discovering such issues before, thus preventing

them from exploding.

www.manaraa.com

128

References

[1] http://docs.oracle.com/cd/B14117_01/server.101/b10726/overview.htm.

Accessed on Nov 2013

[2] Jose Manuel Velasco, David Atienza Katzalin Olcoz “Memory power

optimization of Java-based embedded systems exploiting garbage

collection information”, University of Madrid, August 2009

[3] https://plumbr.eu/blog/what-is-a-memory-leak Accessed on Oct 3, 2013

[4]

http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/index.jsp?topic=%2Fcom.ibm.

java.diagnostics.memory.analyzer.doc%2Fheapdump.html Accessed on

Sep 14, 2013

[5]

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/ga

rbage_collect.html accessed on Dec 4, 2013

[6] http://architects.dzone.com/articles/how-tune-java-garbage accessed on

Sep 17, 2013

[7] Carol McDonald, Sun Microsystems,

http://www.slideshare.net/caroljmcdonald/java-garbage-collection-

monitoring-and-tuning, accessed on 4 Nov 2013.

[8] http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-

140102.html, accessed on Sep 28, 2013

[9] http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Accessed on Oct 5, 2013.

[10] http://www.c0t0d0s0.org/archives/6617-About-Java,-parallel-garbage-

collection-and-processor-sets.html accessed on Nov 10, 2013

http://docs.oracle.com/cd/B14117_01/server.101/b10726/overview.htm.
https://plumbr.eu/blog/what-is-a-memory-leak
http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/index.jsp?topic=%2Fcom.ibm.java.diagnostics.memory.analyzer.doc%2Fheapdump.html
http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/index.jsp?topic=%2Fcom.ibm.java.diagnostics.memory.analyzer.doc%2Fheapdump.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://architects.dzone.com/articles/how-tune-java-garbage
http://www.slideshare.net/caroljmcdonald/java-garbage-collection-monitoring-and-tuning
http://www.slideshare.net/caroljmcdonald/java-garbage-collection-monitoring-and-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.c0t0d0s0.org/archives/6617-About-Java,-parallel-garbage-collection-and-processor-sets.html
http://www.c0t0d0s0.org/archives/6617-About-Java,-parallel-garbage-collection-and-processor-sets.html

www.manaraa.com

129

[11]

http://docs.oracle.com/cd/E13209_01/wlcp/wlss30/configwlss/jvmgc.html

accessed on Sep 14, 2013.

[12] Guoging Xu, Atanas Rountev “Precise Memory Leak Detection for

Java Software Using Container Profiling”, University of Ohio, May 2008

[13] Leon Chen, Java consultant at Oracle, Introduction of Java GC Tuning

and Java mission Control, http://www.slideshare.net/leonjchen/java-

optimization-twjug

[14] http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-

140102.htm accessed on 17 Oct 2013

[15]

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.

html accessed on Dec 4, 2013.

[16]

http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ib

m.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.

html, accessed on Sep 5, 2013.

http://docs.oracle.com/cd/E13209_01/wlcp/wlss30/configwlss/jvmgc.html
http://www.slideshare.net/leonjchen/java-optimization-twjug
http://www.slideshare.net/leonjchen/java-optimization-twjug
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.htm
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.html

