Memory Optimization of Java Based Applications with the help of
Garbage Collection Log

By

Bashar M. Faraneh

Supervised by:
Dr. Akram M. O. Al MashayKki

Amman Arab University

College of Computer Science and Information Technology
Department of Computer Science

December, 2013
Amman — Jordan

Authorization

[am Bashar Misbah Faraneh, authorize Amman Arab University the
right to provide copies of the dissertation to libraries, institutes, agencies
or individuals when necessary.

Name: Bashar Misbah Faraneh

Signature: K ﬁ%‘lg

Date: CZ"3/(—755/02¢2‘""

www.manharaa.com

Resolution of the examining committee

This dissertation titled “Memory Optimization of Java Based Applications
with the help of Garbage Collection Log”, has been defended and
approved on 03-02-2014

Examining Committee Title Signature

Dr. Alaa Alhamami President MWM.

Dr. Ahmad Al-Kayed Member ¥
Dr. Akram Al-Mashayki Supervisor ﬁ:/
M~ et W 4

www.manharaa.com

Dedication

| dedicate this thesis to all those who have assisted me throughout my
study for the Master’s degree.

Amongst those are my father, mother, wife, my kids and sisters.

My parents who encouraged me to take this step forward and continue the
Master’s degree, at the beginning; | thought that my study for this degree
won’t add up a value for me, especially that | work in the field of software
development. Now since | came up with the idea of this thesis, | am very
grateful that | accomplished this degree and | will be looking forward to
continue with the PHD InshAllah.

As said; Many thanks to my beloved wife Lama who supported me by all
means throughout my study.

| also dedicate this thesis to Dr. Akram Al Mashayky and all my friends.

www.manaraa.com

Acknowledgement

First of all, all praise to Allah who helped me to come up with each thought
within this thesis.

| would like also to thank my supervisor Dr. Akram Al Mashayki for his

support, patience and guidance.
| would also like to thank the head of the department Dr. Alaa Al-Hamami

for his patience.

www.manharaa.com

Table of Contents

D= To [Tox= L1 [0 o ISR Il
ACKNOWIEAGEMENT ... eene e v
Table OFf CONTENTSccvveiiice e nnees \
TS o) o U] SR OP S IX
List Of ADBIrevIationscccviii i Xl
AUdience Of The THESIScce i X1
N 01 1 - o USSR X
- | T | OO XV
Chapter One — INTrodUCTIONoocuiiiiiiie e e 1
1.1 Importance of APPlICAtIONScoiiiiiiiiiie e 1
1.2 1.2 Importance of Web Applicationscoouuuiiiiiiinieiiiieiiiiicen 3
1.3 1.3 Benchmarking & Performance measurement............cccccceeeeeeenns 4
1.4 1.4 What is Poor PerformanCe?...........ceeiieieeeiiiiieeeeiieieeee e e e e 6
1.5 1.5 Performance ASPECLScouuuuuiiiiiiiieeieeeeeeii e 7
1.6 1.6 The Problem ... 8
1.7 1.7 Proposed SOIULIONoviiiiiiiiieeceei e 9
1.8 Structure of the TheSiS.......coovviiiiiiii e 11
1.9 Chapter One - INtroducCtion:oviiviiiiiiie e 11
1.10 Chapter Two - Literature ReVIEW:ccccevvevviiieeiieiiiiee e, 12
1.11 Chapter Three - Java Memory Structure and Possible Issues:....12
1.12 Chapter Four - The Proposed Solution:ccceevvvieeiiiiiiiiiiinnnnn. 12
1.13 Chapter Five - The TOOol:coouuiiiiiii e 12
\Y

www.manaraa.com

1.14 Chapter Six — Conclusions and Future Work:ccooevveeeeee. 12

Chapter TWo — LIiterature REVIBW.........cccviiiiiiiiieee e 13
1.15 2.1 Chapter INtrodUCHIONcccvuiiiiiiiiiiie e 13
1.16 2.2 Memory monitoring Methodscooeviiiiiiiiiiiii e, 13

2.2.1 MemOry readingSooeeiveeiiiieee et e et e e ee e e e eeanas 14
2.2.2 Memory Profiling ..o 15
2.2.3 Offline Memory MONItONNGcoovuiiiiiiiieceeie e 17
2.2.3 Garbage Collection Profilingccoiiiiiiiiii e, 19
2.2.4 Offline Garbage collection monitoringcccoeevevviiieiiiineceennnn. 20

Chapter Three — Java Memory Structure and Possible Issuesc........... 24
1.17 3.1 Chapter INtroduCtioncccceviiiiiiiiiiie e 24
1.18 3.2 Java Objects Managementcccoeeveeiiiieiiii e 24
1.19 3.3 Memory Structure/HierarcChyccccoooeiiiiiiiiiiiiii e, 25
1.20 3.4 TheJavaplatform ..., 25

3.4.1 Virtual Machineg:ccoooiiiiiii e 25
1.21 3.5 JIVM MEemOry STTUCIUIEuoiieiieiiieiiie e 27
3.5.1 JVM Memory DIVISIONSuoiiiieeiiiieeieeiiie et e e e s 27
3.5.2 JIVM GENEIALIONScoiieiiiii ettt 28
1.22 3.6 HEAP DIVISIONS ... ettt 29
1.23 3.7 Garbage ColleCtionuiiiiiiiiiiiii e 30
1.24 3.8 Memory Usage and Cleanupccovveveiiiinineieeiiieeeeeeeineeee 31
1.25 3.9 JVM and Physical Machine Resources Sharing 36
1.26 3.10 MEMOIY ISSUES......ciiiiiiiiiii ettt e 37
3.10.1 INSUffiCieNt MEMOIY ...c..uuiiiiiiiiie e 38
3.10.2 Inefficient Memory USage........ccccevveviiiieeiiiiiiee e 42
VI

www.manaraa.com

1.27 3.11 Object’s Memory Allocation & Lifecyclecccoovvvevnnnnee. 48

1.28 3.12 Garbage Collection LOgcovvuuiiiiiiiiiiiiieeieeiieeeeeei e 53
1.29 3.13 COllECtION TYPES ..ovviieeieeiiie et 54
1.30 3.14 What Minor GC tellS US?cooeviiiiiiieeeeei e 54
Chapter Four: The proposed SOIULIONccoiiiiiin e 57
1.31 4.1 Chapter Introduction - How this work helps out! 57
1.32 4.2 Garbage Collection Log Analyzer to the rescuetl.................... 58
1.33 4.3 Reading GC Log file.......coovuiiiiiiiiiii e, 60
1.34 4.4 Yesterday'sweatherccoooviiiiiiiiiiiii 61
4.4.1 Prerequisite Parametersccoovevviii i 63
4.4.2 Garbage Collections & Their TYPesSccoecvviviviiiiieiiiie e 66
1.35 4.5 Collection Types based onthe need:..........ccccocvviiviviinieennnnn. 70
1.36 4.6 Object’s Lifetimecooovviiiiiiiii e 72
1.37 4.7 MemMOry LeaKSooveiiiiiii e 75
1.38 4.8 HEAP SIZE coovveii e 84
1.39 4.9 Permanent Generation SPacecccceuveiveeveeiiiiieeeeeiiieeeee, 85
1.40 4.10 Implicit & EXPlICIt GC....coovveiiieiicie e 85
1.41 4.11 Summary of Theories/Algorithms:............ccooviiiiieiiiiiieeee, 87
Chapter 5 — The Tool (GC Log ANAlYZEN)cccviiieiieiie e 90
1.42 5.1 Chapter Introduction -About the Tool...........c.ceiiieiiiiienn, 90
1.43 5.2 Prerequisites & HINtSccooiiviiiiiiicceee e 93
1.44 5.3 Memory Analysis Information.............cccccceeeieieiiiiiee e, 94
5.3.1 Virtual Memory against Free Physical Memory..............ccc........ 94
5.3.2 Heap Average against Allocationc.ccccceevveeviiiiieeeeeeeninnnnn. 96
5.3.3 Young, Tenured and Permanent generations Allocations......... 97
VII

www.manaraa.com

5.3.4 Young/Old & Permanent Generations usage........cccccoeeeeeevvnnnnn. 99

1.45 5.4 Garbage Collection Analysis Information..................ccceuunnn.. 101
5.4.1 Garbage Collection Distributionccccoooiiiiiiii. 101
5.4.2 Young GC Pause TIMEccoeeiiiiiiiiiieieeiiie et e e eeeees 102
5.4.3 FUIl GC PaUSE TIME....uiiiiiiiiiiiiieiiiiiie e e et e e e e e e e eeeeaannes 104

1.46 5.5 Recommendations & HINtSccccevviiviiiiiiiiiviciciec e, 105
5.5.1 Heap Usage DetailScovveviiiiiiiiiiiiiieeeine e 105
5.5.2 Premature Promotion Information..............ccccceeeviiiiiiiiiiinnennns 106
5.5.3 Full GC INformationcoooevviiiiiiiiiiiiiie e 109
554 MINOE GCS.oruiiiiiiiiiiiii ettt e e e e e e eaee 111
555 MemOry LEaKccevvuiiiiiiiiiiie et 112
5.5.6 YOUNg SPacCe INfO.....cceviiiiiiiiiieii e 114
ST T A =5 o] T | 1 PP PPPPPPP 115
5.5.8 Responsiveness NEedccovevviiiiiiiiiiiii e 116
5.5.9 Throughput Needccooiiiiiiiiiiii e 117

1.47 5.6 Tool Technical Details..........ccoveeviiiiiiiiiiiie e 118

1.48 5.7 Samples from COUEoovvviiiiiiieceeeie e 118

Chapter Six - Conclusions and Future WOorK...........cccooovevieiieie e 126
RETEIENCES ...ttt e st e ere e reeenteenne s 128
VI

www.manaraa.com

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12 :
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21.:
Figure 22:
Figure 23:
Figure 24:

List of Figures

Basic HTTP Web Communication

Visual VM - Memory Monitoring

Visual VM — Heap Dump Analysis

Visual VM — Garbage Collection Monitoring
IBM PMAT — Garbage Collection Analysis

IBM PMAT — Garbage Collection Output
GCViewer Console

JVM Memory Allocation

Heap Divisions

Objects distribution

Threads stack Trace

Basic Java Application Architecture

Heap memory normal usage.

Big process memory consumption.

Efficient memory usage, no possible leak.
Efficient memory usage, no possible leak.
Non-efficient memory usage, possible leak.
In-efficient memory usage, possible leak.

Object Allocation within Heap memory — Phase 1
Object Allocation within Heap memory — Phase 2
Objects allocation from Eden to Survivor Spaces
Object Allocation within Survivor spaces.
Objects Promotion

Objects Allocation

Figure 25: Objects Promotion

Figure 26: Minor garbage collection

Figure 27: Objects distribution against time.
Figure 28 - Possible Heap Memory Leak
Figure 29 - Reclaimable Heap Memory
Figure 30 - GC Log Analyzer brief description
Figure 31 : GC Log Usage Prerequisites

www.manaraa.com

Figure 32:
Figure 33:
Figure 34:

GC Log — Memory Analysis — Virtual against Memory
GC Log — Memory Analysis — Average Usage against allocation
GC Log — Memory Analysis — Young against Old against

Permanent generation

Figure 35:

GC Log — Memory Analysis — Young against Old against

Permanent generation usage.

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41.:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:

GC Log — Garbage Collection Analysis — Collection Distribution
GC Log — Garbage Collection Analysis — Young GC Pause103
GC Log — Garbage Collection Analysis — Old GC Pause

GC Log — Recommendations & Hints — Heap Info

GC Log — Recommendations & Hints — Promotion Information
GC Log — Recommendations & Hints — Full GCs Information
GC Log — Minor GCs Details

GC Log — Memory Leak Information

GC Log — Young Space Information

GC Log — Explicit GC Information

GC Log — Responsiveness Need

GC Log — Throughput Need

www.manaraa.com

List of Abbreviations

DB: Database.

GC: Garbage Collection
I/O: Input-Output

JVM: Java Virtual Machine
KB: Kilo Bytes.

MB: Mega Bytes.

RAM: Random Access Memory.

XI

www.manharaa.com

Audience of the Thesis

This work has been prepared for experience Java developers as well as
project managers who need to get knowledge in the performance issues
related to the memory of any Java web application in general present a
systematic approach for finding and solving memory related issues with the
help of the output of the garbage collection process.

XIl

www.manharaa.com

Abstract

Nowadays, performance of web applications tends to be one of the most
important topics when building applications. We build applications to serve
different kinds of needs that also would vary in their importance. It would
take tremendous efforts building such beneficial applications, thus
maintaining such applications and making sure that they are highly scalable
and available is even a harder job. Accordingly, this thesis aims to shift the
way of approaching and tackling performance problems to a new era,
which is being proactive rather than reactive. Memory related problems are
one of the most popular problems amongst performance problems,
according to the design and purpose of the application, we can predict or
come up with a sufficient resources setup for the application, but still, this
may still not be sufficient to maintain an available and scalable application.
In fact; the resources setup may vary according to the usage of the
application

Applications may not crash, or it may not be suffering from a noticeable
slowness, this does not mean that the available memory for the application
or the memory usage of the application is normal.

With the help of the Garbage Collection Log in Java, the researcher
believes that we can learn many things about the memory usage if normal
or not and even if the memory setup is correct or not, which as a result may
enable us to tune Java based applications performance accordingly by
tuning it's memory usage.

There are many tools available in the market that generates readings from
the garbage collection log, but none are used to really analyze this log and
generate even more useful information that could easily tell us the source
of the problem and how to act. We need to read the pattern of memory
usage for the application which no other tool provides.

Xl

www.manaraa.com

We cannot depend on Snapshots of the memory at a specific time (Heap
dumps) to get the whole picture of the memory usage and pattern since
generating a Heap dump at a specific time is a costly operation, thus, a
constant generation of Heap dumps at each second of the course of the
application sounds irrational.

So, we need other means to analyze the memory usage/consumption of
the memory throughout the course of the application that is not costly and
easy to get.

The problem is that we used to deal with garbage collection log as the
output of the garbage collection operation, but as the researcher will prove
in this work, the activities of the garbage collection not only show the result
of each operation, but could also tell us more like if the current memory
setup is correct or if there is a problem with the application implementation
itself, in order to take action and fix issues accordingly.

Doing so, could even be very beneficial in determining problems that the
customers did not notice yet, even that they do exist. If No one is
complaining, this does not mean that everything is going fine behind the
scenes.

The new approach helps discovering problems that with the right
parameters and circumstances could explode to a severe performance
issue. The theories and concepts that are theoretically presented by this
work are proved and justified using a new tool that the researcher has
developed to help better solve performance issues related to memory. This
will be the first tool to tackle and present solutions for such issues rather
than only some readings.

XIV

www.manaraa.com

.

I X |
sl sddl wis slas¥l s 35T U elgll gl oo gl Colidas slo] 095 3 polodl sl §
dolath) Wb gucs Josdl g deogith] Olarlaoyl duli 9o Bugdr Oliudal sl (o Sugl) B Oliuks
& Wilsd & jlyatul Glod 9 Lude AaSlontl s ¥ 1S 354z] bzt Busde Sliadal 1Sy « duoall (0
ISV gasl 9o greusiiud) Sus 33

sz ololL dilstl JSLaLI Joy dasmll luck! s J] Sugs I dudydll 0d 595 Gl « Baw Lo s oL
) JSLaL) 35T oo Busly 8,SIL dilsal) JSLa) s dououad Bghas (955 O o0 Yo Ldlotw] Bghs
US> o Badadl) Jusidd dojMT Colisbly yolably sudl maaius Lol Jodll LiSlq « adas T olsl e 5355
oY Ao 585 ¥ U8 Gadd] s O @6 dolusiu] g2 9 4AS

plisiiw] ddS (e KSJ) ddyme LiSg L) d2ly 09 9hai o3) Garbage Collection Log plusiwh
JaeVI ddy ol Lo 8,511 Jlestiw] & b CSIS)9 b Uas oo Sl 318 o) 8,513

Olelydll yasy elasy Garbage Collection Log 8¢/,ds pgdi I OlgoV) o wiSUI ,Blg5 Sl CBgll &
38T 0955 18 L8L5) Glogloo i) uadi Julowty podi eaio Busly Yo oS dgie o3Latu¥l oSg I
W pods I BISM derlod] puals o0 1y lgizdlne 4dSy Al yas] 8yLaYL dwsl

08 Ologlee (s (48 dgdlsd |)has Mie Heap dumps Jio Wl 8)85b) Gyhall s sloisd) LiSg ¥

Ugs 8151 plaseia derloy o5 13 . yeiuss JSia o] Galibl xe (o gu 13 Jadd sume gy 8,513
Gaeadll 15] ABIL yatucs JSiy 8,51 plusein] AS Julowd

Bugde digym elo¥) OIS

oo ColSg L usd Ll ddesl) dowiis garbage collection log ge Jolzd] s buss) Ll o sl
U935 Lély dukos JS 2l5 (o,2) Jalls Cuwd (0 garbage collection ol GLsb egSl Gow & goobl ldg
Usie (gl Pl OIS) o Y pl dommo dis phay puseins 8,511 CSlS §) Jb) desw o ESLS] Siloglag
) SSUL) Wuod e d phall 0dgg (5088 U ko 9 AISAL) s e dolu 10gd duds Gadatlly
2 Y gk podddl g JSLakl BLES| pusd coakd o lataoWo o1 o U8 i Wizdlneg gedscub] dlgs
el b o s & S O 8y90a0L

XV

www.manaraa.com

B lall Gadadl plusiiu] ye @25 08 19 eloVL dilsab) JSLik) BLES) e dslud Busuzd] diy yhall
dalaeyl

Woyghans pl I Bugasd] 818V N5 o Jostll 1o § L5 LS5 Gaw ¥ eudlibly byl O3] o5
BySIVL dag bl ol JSlie Jou Busluelt Eo W)

(OlelB 3yze pulls A Wl oo Logs duindis Jolo puii Ul lye s oo J9YT oo BI0Y) ol (98w

XVI

www.manharaa.com

Chapter One — Introduction

1.1 Importance of Applications

Computer applications play a significant role nowadays in accomplishing
complex tasks in no time. Key businesses cannot stand having their
applications being unavailable even shortly. [1]

Customers buy applications to help them accomplishing their business
processes efficiently and quickly. They even build strategic plans and
decisions with the help of such applications.

For this reason, customers cannot tolerate applications that were supposed
to fulfil and achieve their objectives being not available or even of low
performance.

Another new term emerged lately, which is the “User Experience” in which
the users/customers nowadays help setting the limits and standards for the
tolerated and acceptable response time. As a result, many methodologies
and tools were introduced to help measuring the application’s efficiency,
productivity, and for sure performance.

Making the application more scalable imposes new challenges and even
threats for the application’s owners to deal with. On the other hand, making
applications more scalable threatens their availability.

Application’s availability as mentioned previously in this research means
simply whether the application is online or offline, applications that are
always available can be defined as highly available applications, otherwise,
it is set to be poorly available.

Simply, application’s Performance can be described, as the raw speed of
your application in terms of a single user.

www.manaraa.com

Java Based Applications

According to recent studies of the programming community, Java is
probably one of the most popular programming languages in the world. We
are used to the presence of Java in all kind of servers, personal desktops,
and more recently embedded systems. In fact the Java Standard Platform
Is being used in all types of embedded devices, ranging from routers, smart
phones, and 3G telecommunication devices. [2]

The Java language has many advantages over other programming
languages as follows:

e Platform Neutral

e Automatic Memory Management
e Object Oriented

e Easy to learn.

One of the important strengths of the Java language as stated previously is
the automatic memory management, in which the management of the
memory of a Java based application is left to the JVM itself, rather being
the responsibility of the developers besides the role of designing/building
applications.

Having such ability to automatically manage memory of a program leaves
not much space for developers to tune the application’s memory.

This is correct up to an extent, developers still could have an impact on the
application’s memory if for example they choose the wrong API’s to
accomplish the tasks, or if they create objects that are irrelevant to the task
or even redundant.

Programs may even need different resources to accomplish tasks, like 1/0
operations,

www.manaraa.com

Database operations, or any other resources. It is extremely important to
efficiently use such resources, because if not, it may extremely affect the
application’s memory which is a valuable resource that should be best
utilized in able to maintain a scalable and available application.

As pointed previously, it is the responsibility of the Java to automatically
manage the memory of the applications it hosts; still, there are many
responsibilities on the developers of the applications, which if not done
carefully could extremely negatively impact the memory aspect of any
application.

1.21.2 Importance of Web Applications
As illustrated in the previous section, it is a critical job to best utilize the
available resources of any application, especially the memory part.

The job becomes even harder when it comes web based applications. For
instance, what is acceptable memory consumption within a stand-alone
application may not be acceptable for a web based application.

Key businesses need to extend their services base as much as possible,
web applications make this much easier to achieve.

Web Application Basic Structure

It starts when any client request a service from the web application, the
server then tries to process the request and forward it to the correct handler
to handle the request, it may require accessing the database, and finally,
the response is sent back to the client with an answer to his request, as
part of the response.

www.manaraa.com

This end to end operation is called Request-Response model, starts from
the client as a request and also ends there as a response. This operation
may face some bottlenecks at any stage which may affect the response
time and/or the ability for the server to serve more requests, which as a
result lowers the application’s performance.

Request

DataBase

Response

Figure 1: Basic HTTP Web Communication

The operation can be referred to as the transaction, which is simply; a
single logical application behavior, that is; the client’s request leads to a call
to the appropriate application logic on the server.

1313 Benchmarking & Performance measurement
Customers need to do as much transactions as possible to make the best
of a profit.

In the world of web applications, what is the standard measurement for
performance?

www.manaraa.com

It can be different according to the perspective, for some of us, it might
refer to scalability, the more the scalable, the better the performance, for
others it might mean the availability, but for user’s it's usually the response
time.

Drilling down into the “Response time” aspect of the performance is
somehow tricky, for instance, an operation within an application maybe
taking much time because the resources are being inefficiently used by
another operation within the application, which as a result could be
misleading regarding our findings and analysis.

Take another example, observing memory consumption for a specific
operation within a specified time interval could also be misleading; results
that may seem normal could be not and vice versa. Memory could be
highly used due to inefficient usage of the resource rather than it is being
efficiently used.

For that reason and many others, getting out with reliable, reasonable
benchmarks for performance is somehow tricky.

Who defines benchmarks?

According to the researcher’s experience with web applications, setting up
the benchmarks of the performance for the different business processes
was only left to the applications owners.

With time, and the increasing demand on web applications, customers
gained more experience with web applications and the depended more and
more on these applications in a way that can determine what is acceptable
and what is not.

www.manaraa.com

1414 What is Poor Performance?
Activities that create demands for system resources that cause response
time to exceed users expected tolerances.

When it comes to poor performance, it could be related to a congested
network that is currently unable to host new customers, it could be related
to DB where it is loaded with many data, it could be related to IO operations
where the requested number of operation is more than the servers could
handle, it could be a CPU issue, where there are many clients to be served
per milliseconds, or it could be related to memory issues where there is no
enough memory to serve that amount of requests.

This work is going to target the memory aspect of the performance with
respect to the garbage collection process, more specifically application’s
performance that is built on top of the Java technology.

Performance monitoring or measurement is not a new term; it has been
always the main concern for application’s owners.

In order to achieve acceptable response time, all of the components of the
web application should be tuned to achieve a better application’s
performance.

Memory is one of the critical resources needed for any application, for this
reason, it should be carefully used, otherwise applications would be
inefficient, not scalable or event not available.

For instance, memory tuning and monitoring applications are divided into
two approaches:

- Memory Profiling Tools.
- Detailed analysis of objects distributions and allocation sizes.

www.manaraa.com

1515 Performance Aspects
As already illustrated in the previous chapter, performance issues could be
classified under many categories:

- Memory related issues.
- CPU related issues.

- 1/O related issues.

- Network related issues.
- Database related issues.

These are considered critical resources that if not used efficiently and
effectively could easily result in resource starvation which may affects the
response time of an application, hence lowering the user’s experience.

If we started with the Database tuning options, this topic have many
researches and its own methodology that reached to a point that is mature
enough to tune DB transactions or even DB structure related problems.

The same goes for network and files operations (1/O) related issues, many
tools emerged that enables technical teams to monitor the traffic of the
network and the operations on the file system to track source of problems.

The discussed aspects at the beginning of this section are easy and
straight forward to track, tracking a specific path of the network, tracking
traffic of specific nodes, tracking the source of I/O problems.

As for the other classifications: CPU and Memory, they have been always
considered a tricky topic, it always bares more researches and
investigations. Actually problems related to these two categories of a Java
applications are the most common and needs more efforts to work on.

These aspects directly affect response time in which:

- A congested CPU could simply affect response time, hence the
user’s experience.

www.manaraa.com

- An overloaded memory also could simply affect response time.

They are very important because with each request within a web
application, CPU is needed to execute certain tasks (processes) and
memory is needed to load and prepare the commands for the CPU to
execute.

1616 The Problem
Memory issues fall under the following two classifications:

- Insufficient Memory Available.
- In-Efficient Memory Usage.

Knowing the classification of a memory issue has a big impact on solving
the memory related problems, without knowing the type of the problem; it
would be impossible solving the issues.

Several methodologies currently exist to help solving memory issues, the
problem here is not with the shortage of the methodologies/approaches or
even tools, the problem is with discovering issues at the right time.

The second shortage of the current methodologies is the weakness to
discover memory issues if no one is complaining or if no one noticed any
performance issue. Current approaches would be very costly in fulfilling this
need as this work is going to present.

Whenever memory related issues are spotted, the current approaches
would provide an excellent way of analyzing the issue and the real cause of
it. The challenge here is that most of the memory related issues do not
appear out of a sudden [3]. This means that in order to analyze and spot
memory issues (which as pointed already pointed, most of them do not
appear out of a sudden) with the help of the current approaches would be
very costly and not applicable.

www.manaraa.com

1.7 1.7 Proposed solution

What we need is a way to know how efficient the memory usage or setup
for our applications is, the approach is simply by depending on another
source of profiling and dealing with it in a new way to know these very
important points: The memory sufficiency for the application and the
Efficiency of the memory usage for the application.

If we want to approach the memory issues and activities, we need the most
efficient way, which is the “Garbage Collection Log”, where the Garbage
Collection is the process responsible for freeing and managing the memory
resources. From the activities of the Garbage Collection, it can tell us a lot
about the health of an application from memory perspective.

The Garbage collection activities are represented by a “log” file which
contains every single activity for the garbage collector whenever it needs to
cleanup/manage memory for the application.

When we say “manage memory” it is referred to the “Allocation and De-
allocation” processes, allocation refers to the process of allocating memory
for objects and processes, while de-allocating refers to the process of
reclaiming back the reserved memory for these objects/processes
whenever they no longer need them.

Profiling the Garbage Collection Log is a not new thing, but it needs more
attention to make it easier on application developers or even system
administrators at the customer’s side to take a decision towards any
memory issues if present, current tools provide numbers out of the
Garbage collection log, which still needs analysis from the application
developers. The Proposed approach in this work does the analysis and
provides straight forward recommendations for either the application
developers or again the system administrators.

www.manaraa.com

It even presents a new approach for when to monitor the garbage collection
log to resolve the issues related to memory in general or even related to
memory leaks as discussed previously, in order to get early and constant
feedback on the health of the memory rather than waiting for customers to
complain about the performance of the application that is related to
memory. It is very frustrating for customers to have their applications very
slow or being unavailable for any reason, so by this we can know if any
memory issues available before they turn out to be a show-stopper issues,
hence react upon before it’s too late.

It is a not common case to have performance issues within applications, at
the contrary, applications should be developed very efficiently and
effectively not to produce any performance issues, still maybe according to
the usage of the application or even to the number of users, things may
change and in specific scenarios, some components of the application may
appear to be weak whenever applications are heavily loaded. For this
reason, we need to be act before memory issues become severe problems.

Depending on the two current approaches mentioned in section (1.5.1
Introduction) for memory monitoring, would be too late, because they are
used either to check the current usage of the memory by the application, or
even to analyze a snapshot of the memory at a specific time; usually this
snapshot is taken whenever the application is about to crash or when it is
extremely slow.

If No one is complaining, this does not mean that everything is fine.

The approach that the researcher has followed depends on the fact of
discovering small or average performance issues related to memory before
they turn out into big performance problems.

This research comes up with a systematic approach towards tuning the
memory of Java based applications with the help of garbage collection

log

10

www.manaraa.com

The research propose theoretical solutions towards solving problems
related to memory depending on the garbage collection log, then it even
presents a practical solution by developing a new tool that facilitates the
process of discovering problems and presenting a better way in solving
them.

Implementation Details

The theories and solution provided by this work only applies to web
based Java applications. The solution was developed using the latest
technologies in the Java language.

Technical details:

. Javab5 &6.

. Eclipse Kepler IDE
« PrimeFaces

e (Qcviewer

1.8 Structure of the Thesis

1.9 Chapter One - Introduction:

The aim of this chapter is to put the readers on track with the importance of
Web applications in accomplishing nowadays tasks and according to their
importance, the availability and scalability of applications varies.

It also discusses in brief the meaning of Performance and the means of
measuring it for Web applications and the challenges that faces any
performance tuning strategy of web applications.

It also simply defines what a poor performance is when it comes to the
memory aspect of an application.

11

www.manaraa.com

It also puts the readers on track for the importance of memory aspect of
any web application and its role in maintaining stable application.

1.10 Chapter Two - Literature Review:

This chapter put the readers on track with the current approaches towards
monitoring of the memory of an application and also the tools available to
analyze garbage collection log.

It finally point out what the current approaches/tools are missing.

1.11 Chapter Three - Java Memory Structure and Possible Issues:
This chapter explains the structure of the memory for the JVM and its
different divisions. It also explains the Object’s lifecycle within the JVM

memory. This is very important in order to understand how to come up with
possible solutions to memory related issues.

1.12 Chapter Four - The Proposed Solution:

This chapter illustrates the solution that this research presents to approach
memory related issues that causes performance bottlenecks.

1.13 Chapter Five - The Tool:

This chapter illustrates the developed tool by the researcher, which is a
new tool that the researcher developed to approach and present solutions
to the performance issues that are related to the memory or garbage
collections activities.

1.14 Chapter Six — Conclusions and Future Work:

This chapter briefly explains the conclusion of this work along with the
future work plan.

12

www.manaraa.com

Chapter Two — Literature Review

1.15 2.1 Chapter Introduction

As previously said, there are many available tools and researches that
targets all the performance issues for applications, from DB monitoring, /O,
network, CPU to memory monitoring applications.

Within this chapter, the research will only focus on the best available
memory monitoring tools developed so far, and then it will finally briefly
explain the elaboration and the added value that this research will present.

Memory is considered one of the systems important resources, according
to the nature of the application; the memory setup varies.

Applications could be small, medium or large/enterprise sized. In all cases,
applications providers all over the world consider the memory an expensive
and limited resource that should be used efficiently.

As mentioned previously; this paper will target the memory performance of
Java based applications.

Before drilling down into the problem and the proposed solutions, we have
to point out what is currently introduced in the market and what has been
developed in this area.

1.16 2.2 Memory monitoring Methods

13

www.manaraa.com

There are many options for monitoring memory of applications, mainly
done with the help of tools nowadays.

There are many tools from different vendors today in the market; they
mainly focus on monitoring the memory used by an application throughout
the course of an application.

Such capabilities are very important, but not to a big extent. Meaning that,
they are useful up to a limit only, they have much functionality that can be
categorized in brief to:

¢ Instant monitoring: Instantly monitor the memory, used to check out
the memory usage currently by applications.

e Recorded monitoring: For history tracking; used to check out the
memory usage within a specified time-frame.

Why both options are needed?

The monitoring capabilities provided by such tools are mostly used by the
applications developers to track how much memory a specific process
consumes, this is beneficial in checking if the implementation of this
process should be tuned or not, or even to decide if another
implementation methodology should be chosen.

Also, it gives us a way to check the overall progress of the application in
terms of memory usage for a specific business day within the customer’s
organization.

2.2.1 Memory readings
There are a number of tools available that helps monitoring the memory

usage of an application at runtime, showing the available against free
memory.

14

www.manaraa.com

This is helpful for the applications owners to use if to monitor whether the
application is performing well or not in general, or in a specific scenario.

It could be used to get:

- Initial Memory Used.

- Average Memory Used.
- Max Memory Used.

- Min Memory Used.

This is interesting and beneficial; it helps in getting to know how much
memory applications consume according to the above classifications. The
problem with this approach, let us call it, “Online Memory Monitoring” in
reference to getting instant readings about the memory for an application,
the problem here is that it does not give us much details and also it does
not inform us when wrong things happen.

On the other hand, these readings could be misleading because the same
application could behave differently on the customer’s side, many things
could affect the application’s performance, from the way of usage, to peak
hour’s usage and to the number of users using the application, these could
be of big difference also, and the output even varies from customer to
another.

These concerns should be covered in any monitoring strategy, which
currently are not.

2.2.2 Memory Profiling
One of the most famous tools to monitor memory usage is the VisualVM
which is an Oracle product (originally from Sun Microsystems).

15

www.manaraa.com

It contains some features to monitor the memory usage as illustrated in
Figure 2. As an example, it uses charts to represent instant consumption of

the memory during the lifetime of the application.

[Overview] Monikor | (=] Threads | (2 Profier |

Demo (pid 4424)
| Monitor [fizsg [PermGen [V Classes [Threads |
Uptime: 3 min 43 sec Perform GE I Hezap Dump |
| Hesp x| | x|

[Classes x| | Theeads
G000
30
4000 ¥
20
2000 10
0 0

[PermGen size [l Used PermGen

17:22:00 17:2 17:22:00 17:2

=3 Total loaded classes B Shared loaded classes D Live threads B Dacmon threads

Figure 2: Visual VM - Memory Monitoring

16

www.manharaa.com

2.2.3 Offline Memory Monitoring

Besides the online monitoring provided by such tools, it has an offline
monitoring option, were it could show the usage in details the distribution of
objects in memory. Meaning that; it shows for each type of an object how
much memory it is using from the total amount of memory.

This is done through what is called a “memory dump” to get a snapshot of
the memory consumption at a specific time.

Heap dump is a snapshot of the memory of a Java process [4].
This can be done in two ways:

- Automatic: An automatic heap dump could be generated whenever a
threshold is met or an out of memory error is thrown

- Manual: A manual snapshot of memory could be generated at any
time.

Heap dumps are very useful in showing which entities most consuming
memory as shown in Figure 3.

17

www.manaraa.com

| @ Crverview | (] Monitor | =] Theeads | (&) Profiler | 55 MBesns | 5, baapdump-1204307575240. horof x|

C com.toy.anagrams.ui.Anagrams (pid 2096)
Profiler

profe: [Oy | [(Evemory | [B |
Status: pecking rueie (Ansyze Memery)

Proifiing results
Raaw o @

Class Name - Allocated Objects Bytes Allocated = Bytes Alocated Objects Alicated
jarvin.Jang, Object[]] B7ISZE (17) 29560 (21.0%) &~
java ko ObjectStreamClassiWeakClasskey] B0 34 B (15.79) 23976 (19.2%)
char[] [| T2 B () 10213 (3.2%)
jave. bl TreeMapgEntry I 5084 B (1z5) 19533 (15,7%)
byte[] [] 414566 (5.1%) 1975 (16%)
int[]] 41144 B (%) 1029 (0.4%)
farva.Jang, SRring [| 153126 (3%) 6078 (445
farva, okl TreeMap | 112808 (2% 2193 (148
jarva o, ObjectStreamilass [} 107526 (210) 1059 (0.6%)
java. kil TreeMapikeyiterator [] GO B (L) 270 (2w A
!:_;cle»;;-‘la'r.e Fiter] >

Live P it :]

Figure 3: Visual VM — Heap Dump Analysis

It shows the memory usage per object which is very useful in determining
areas with highest memory consumption,

As we noticed, such tools give us indications of the application’s health at
specific point of execution, which is after the fact an issue occurs.

So, using such tool, gives us instant indication of the application’s health
which is not quite accurate in determining the overall progress of an
application.

18

www.manharaa.com

Heap Dumps Trade-off

As heap dumps are very useful, they are also costly, they actually stop the
processes of the application from being executed until finished, and the
time it takes to generate a heap dump varies depending on the amount of
memory currently being used.

This means that, we can only know the memory details only at specific
time, which as a result does not represent the memory consumption of an
application.

2.2.3 Garbage Collection Profiling

Garbage collection is a process that is responsible for freeing unused
objects from memory, these activities runs in the course of the application.

There are also many tools used to monitor the activities of the garbage
collector, again, many of them are categorized under the “Online”
monitoring tools (Profiling tools).

Online garbage collection monitoring tools are used to monitor the activities
of the garbage collector towards a specific process, hence knowing how
the garbage collector behaves.

Again, this is not highly useful since, it is only used to monitor single
process readings.

Here is how the Visual VM tool helps with the garbage collection log.

19

www.manaraa.com

Visual GC ¥ Spaces (¥ Graphs (7] Histogram

Spaces x Graphs x
Pe..; O | [Eden rG ile Time: 1326 - 14.859s
[/| W) A 4 [1} i + (SN Y
J‘» | Class Loader Time: 6318 loaded, 0 unloaded - 3.353s
|| I
- GC Time: 15 collections, 11.502s Last Cause: unknown GCCause
))
Eden Space (1.667G, 1.667G): 1.385G, 12 collections, 10.341s

r Survivor 0 (170.625M, 170.625M): 170.623M

Survivor 1 (170.625M, 170.625M): 0

 Old Gen (4.000G, 4.000G): 3.144G, 3 collections, 1.162s

|
|

' (150.000M, 150.000M): 49.451M

Figure 4: Visual VM — Garbage Collection Monitoring

As it is shown in the Figure 4, the Visual GC that is part of the Visual VM
tool, it shows the different areas of memory that the garbage collection is
responsible for managing them.

2.2.4 Offline Garbage collection monitoring
2.2.4.1 IBM PMAT for IBM Rational Developer

IBM PMAT is a good tool for analyzing garbage collection log and giving
some statistics of the collection process.

The researcher thinks that it's a good tool but it's not sufficient because we
need a tool that gives us the pattern between the different readings and
drives us through the process of tuning with the help of garbage collection

20

www.manharaa.com

Here is some screenshots from the tool:

" IBM Pattern Modeling and Analysis Tool for Java Garbage Collector ===
File Analysis View Help

[Labtog

File name : SAWASRUMNT ools\PMAT(GCAnalyzeritutorialilabl log

Number of verboseGC cycles : 55

Number of Garbage Collections : 64356

Number of Allocation failures : 64237

First Garbage Collection : Tue Nowv 16 17:01:33 2004

Last Garhage Collection : Mon Feb 7 12:26:11 2005

Number of Java heap exhaustion : 51

Maximum AF overhead : 100% (IMon Dec 13 14:52:08 2004}

Number of 100% overhead : 124

Maximum size of Large Object Request : 12,582,928 bytes (Wed Dec 15 23:10:32
20043

Number of Large Object Requests : 75
List of Java heap failures(Refer to Analysis and Recommendations report section

for details)

Large object request.could not locate 6,291,472 bytes of contiguous space / 161,741,008
biytes available Mon Dec 13 14:47:46 2004

Large ohject request.could not locate 6,291 472 bytes of contiguous space / 166,021,456

|Open Open verbose garbage collection logs |

Figure 5: IBM PMAT - Garbage Collection Analysis

This tool is used to analyze garbage collection log offline, that still not
efficient enough to put us on track with the status of the application and
what can be done rather than only raw readings that do not tell us what
should be done.

As shown in Figure 5, it illustrates some readings that are good, but not
good enough, because we need to know the pattern between the
application and these readings.

21

www.manharaa.com

Figure 6 shows the analysis of each garbage collection event.

Free Needed | Freed)

71,290,728 150,403,584 8,216 |65,052,144 [39,112 142,883,408 (325 Wed Nov 17
71483312 150,403,584 (8,208 |65,257,496 |26,344 142,883,408 [325 Wed Nov 17
71,233,896 150,403,584 [5,904 |64,993,224 |41,200 142,883,408 [334 Wed Nov 17
71,340,016 150,403,584 (16,400 |65,027,296 |113,248 142,883,408 [336 Wed Nov 17
71,343,000 150,403,584 [10,336 |65,117,936 |25,592 142,883,408 [326 Wed Nov17
74,790,064 150,403,584 528 168,590,592 |0 142,883,408 |300 Wed Nov 17
74,688,464 150,403,584 (5,208 |68,469,184 |19,808 142,883,408 [258 Wed Nov 17
75,074,656 150,403,584 (10,336 [69,751,640 |23,544 142,883,408 [303 Wed Nov 17
85,002,496 |150,403,584 10,336 79,689,064 [13,960 142,883,408 [268 Wed Nov 17
92,235,248 150,403,584 (8,208 |85,388,184 |77,208 142,883,408 [234 Wed Nov 17
95,701,760 150,403,584 (8,208 |88,335,056 (28,328 142,883,408 [212 Wed Nov 17
95,218,200 150,403,584 (8,208 |87,728,952 |21,128 142,883,408 [214 Wed Nov 17
95,291,912 150,403,584 (10,336 |87,809,502 |14,200 142,883,408 [225 Wed Nov 17
95,706,960 150,403,584 (8,208 |88,174,856 |63,984 142,883,408 [225 Wed Nov 17
95,801,112 |150,403,584 8,216 88,360,256 |62,736 142,883,408 [227 Wed Nov 17
100,221,568 |150,403,584 528 |43,762,496 (56,450,072 [150,403,584 |139 Wed Nov17
07,359,144 [150,403,584 528 39,465,672 |57,893472 [150,403,584 215 Wed Nov 17

4 1149 47N /44 1”78 AN NARA 248 In 142 AR33 4N8 13”4 Mied Now 17

e GC Tahle View

Figure 6: IBM PMAT - Garbage Collection Output

22

www.manharaa.com

2.2.4.2 GCViewer 1.33

This is another tool used to analyze garbage collection log offline, that still
not efficient enough to put us on track with the status of the application and
what can be done rather than only raw readings that do not tell us what
should be done as illustrated in Figure 7.

OO0 tagtraum industries incorporated - GCViewer

S|4 |E| B @) 100)

o006 fUsers /hendrik /gcviewer_gc2.txt
. |ow0.10 |owoo.20 |0:00.30 |o:00. ,_[Summary—|—Memory |=Pause }_\
- Acc pauses 0.76s
02 Acc full GC Os (0.0%)
2.000K Acc GC 0.765 (100.0%)
_ Min Pause 0.00124s
Max Pause 0.29116s
1000k 2168 AvgPause 0.00999s (g=0.04279)
Avg full GC n.a.
== Avg GC 0.00999s (o=0.04279)
o ool i |
4
ene [Users fhendrik /gcviewer_gc_pargc.txt
Uluausm:ﬂﬂ.ﬂﬂ 1) |[a:0200 |o:0400 |0:06.00 . | 5 Memory—|—Pause]_\
20,000
Footprint 22,528K
Freed Memory 38,126K
Freed Mem/Min 5,348K/min
10,000K Total Time 427.78s
G010s Acc pauses 0.21s
—— Throughput 99.95%
Full GC Performance n.a.
oK GC Performance 179,564K/s
i

Figure 7: GCViewer Console

Before drilling into the concepts, algorithms and hypothesis that this
research is going to present, it is needed first to point out and explain the
memory and the garbage collection structure in Java.

23

www.manharaa.com

Chapter Three — Java Memory Structure and Possible Issues

1.17 3.1 Chapter Introduction

This chapter will put us on track with the structure of the memory within any
JVM. It is important to understand this structure in details in order to come
up with a better understanding of the possible approaches towards memory
tuning.

1.18 3.2 Java Objects Management

Java Enterprise Applications are Java based applications that are
developed to serve enterprise needs. One of the most important features in
the Java programming language is that the management of memory
resources is left to Java itself.

The architecture of the Java language is designed to best serve the
concept of automatic handling of the objects within an application. With
time, objects maybe still referenced and still needed, other objects may not
be needed anymore, so that's why within the Java language is a process
called “Garbage Collector” that manages such operations.

Garbage collectors are of two types, thus, in order for the collector to
operate efficiently, it was a must dividing the Java memory called “Heap”
into generations, assigning each collector to each of these generations.

In order to understand how this work will help in determining and solving
performance problems with the help of the “Garbage Collector” activities, it
Is needed first to explain the Java memory structure and how it is divided
into different areas and what does each area hold.

It is very critical first to understand the basic features of the Java language
regarding the collection process before presenting any solutions on how to
resolve the known issues.

24

www.manaraa.com

1.19 3.3 Memory Structure/Hierarchy
Any memory consists of the following types:

e Registers.
e RAM.
e Cache.

Memory in general is needed because it is known of its speed over
traditional storage drives (Hard disk drives) for permanent storage,
accessing data within memory area is much faster than loading and
reading it from the permanent storage, that’s why it is more expensive.

For this reason, we should carefully deal with such small/costly resource
that is needed for any application.

1.20 3.4 The Java platform
3.4.1 Virtual Machine:

One of the most important concepts in the Java programming language is
promoting it from being only a programming language to be an independent
Virtual Machine that can manage itself.

As previously said, Java is not just a programming language only, it's a
platform by which it can operates solely within the hosting machine if it
grants the JVM some of the resources in order to operate.

Memory, CPU and storage are one of the common resources needed by
the JVM.

This work will only target the memory aspect of an application because of
its critical role in the availability and scalability of any application.

Any Java Virtual Machine (JVM) memory is divided into the following
areas/segments:

25

www.manaraa.com

e Heap Memory: The Heap memory is the runtime data area from
which memory for all class instances and arrays are allocated. Heap
memory is managed through an automatic process called “Garbage
Collection”

e The Non-Heap Memory: Stores the runtime constant pool.

Being a platform itself, made it easy for programs to run on any platform,
since the responsibility of making the same code runs on any platform is
the responsibility of the Java platform.

At the startup of any Java program, the JVM gets some portion of the RAM
memory from the operating system, as the shown in Figure 8; it is the
general view of a JVM memory.

-

MM is allocated portion of RAM

J

OS memor

JVM memory

Figure 8: JVM Memory Allocation

The Heap memory is a pre-allocated memory from the RAM, at startup, the
JVM is given a pre-allocated portion of RAM once, so it does not have to
fetch free memory from the RAM

26

www.manaraa.com

1.21 3.5 JVM Memory Structure

Since the Java language is not only a programming language, it's a
platform that is self-contained and has the needed capabilities to manage
its resources on its own; therefore it has its own memory structure.

3.5.1 JVM Memory Divisions

The JVM memory is divided into 2 main areas [5].

e Heap Memory.
v Young Space.
v Old Space.

e Non-Heap Memory.
v Permanent Generation.
v" Code Cache.

Survivor Space

A
r' A
eden S0 S1 Tenured Permanent
\ v A v M v J
Young Generation Old Generation Permanent Generation

Figure 9: Heap Divisions

The Heap memory is where Java program data is stored. The Non-Heap
space is where the meta-data required by the Java Virtual Machine is stored.

27

www.manaraa.com

3.5.2 JVM Generations

A. The Young Space [5]

1. The Eden Space:

Any new object will be stored in the part of the Heap memory, the Eden
space.

2. Survivor Spaces:

The objects that reside in this space are objects who survived through the
process of garbage collection of the Eden Space.

Both the Eden Space and Survivor Space are called “Young Generation”
space of the Heap.

The only difference is that Objects that age (Survive garbage collection are
being moved from Eden to Survivor spaces)

B. The Old Space(Tenured Space) [5]

It is the pool that contains objects that existed for some time in the Survivor
Space.

C. The Permanent Generation [5]

It is the area where the meta-data of an application is stored, whether this
data was describing user data like his classes/methods or the standard
library data.

Example: User’'s Classes and Methods, even the Java library classes.

Someone could ask why the memory in Java has been divided into such
spaces; they are divided in this way for two reasons:

28

www.manaraa.com

1. Lifetime of Java objects.
2. The way in which the memory is being managed. (Algorithm or
concept in which memory is managed or maintained).

The lifetime of any Java object is related to the garbage collector role in
Java.

When we are talking about memory with the Java applications, it is needed
to mention the important role of Garbage collection that is explained on
different stages throughout this paper.

1.22 3.6 Heap Divisions

The most important part of the memory of a Java application is the Heap. It
is the part that this work will focus on in terms of the performance tuning
approaches.

Again, Heap is divided into 2 main parts:

1. Young Space.
2. Old Space.

The Young Space is where all new objects are allocated. It is called Young
because only relatively new objects are stored in Young and kept there for
a portion of time.

The Young as we saw is divided into two portions; Eden Space and
Survivor Spaces.

Whenever a new object is created, it will be allocated to the Eden Space of
the Young generation, which is the first stop of the newly created objects.

29

www.manaraa.com

1.23 3.7 Garbage Collection

Java allows developers to create objects/variables without worrying about
the cleanup of the resources that is; memory management. The process of
allocation/de-allocation is handled by the Java platform itself.

Garbage Collection can be categorized under the concept of Memory
Management.

Memory Management is the process of recognizing or identifying when the
objects in memory are no longer needed. This process in the Java
language is left to the Java platform itself, rather than being left to be
handled by the programmer, since it may cause many issues such as
memory leaks.

Garbage collector is responsible for:

v' Allocating Memory
v' Recover memory from objects that are no longer referenced.

Garbage collection solves many allocation/de-allocation problems, still
there are some challenges that make this cleanup process a tough one, for
example we can create objects indefinitely until there is no more memory
available to handle this.

30

www.manaraa.com

1.24 3.8 Memory Usage and Cleanup

With every trigger for a garbage collection, a log is generated accordingly.
Before we take a closer look at how this log looks like or what does it
contains, we need to know how we can benefit from it.

Garbage collection as this work pointed previously is the process of freeing
up some chunks of the memory, whether it was of the Young or Old Space.
With every trigger for a garbage collection, we can set a flag to log this
operation.

From this log we can know very useful information that could tell us a lot
about the health of the application, for instance, many Full or Minor GC
events could mean a lot, it could mean that the garbage collection type is
not efficient and should be changed, or it could mean to increase the
allocated memory for the application or even it could mean to decrease the
allocated memory for one of the Heap spaces.

Based on the researcher’s experience with many applications running on
the Java platform, application owners tend to react to performance issues
after the fact a problem rise. The application could be running and
functioning well but maybe not up to the expectations, yet they would not
know, with the correct circumstances, a performance bottleneck could
easily show up eventually. The application could be suffering but a little,
this is where we should focus on.

For instance, if an “Out of memory” error is thrown, the perfect solution is to
have a “Heap dump” and/or “Threads dump” at the moment where there is
an unbearable performance issues, or even; if an out of memory error is
thrown.

31

www.manaraa.com

But what about the overall behavior of the application, is everything is fine
and doing well when no extreme issues rises up? An issue could be
noticeable after hours or even days since the application’s start up time, but
it suddenly became a show stopper that should be solved and tends to be a
severe issue that should be solved right away to be able to continue using
the application.

The researcher believes that we can do a lot and have useful information
about the health of the application before a show-stopper issue rises. We
can even predict what would happen with the current status of the
application.

The researcher believes that such information that can be classified as
“Corrective” and “Preventive” actions can be extracted from the Garbage
collection log.

Preventive actions through which can give us an indication on how the
application is going to behave soon or even later on. Corrective actions
were when something starts to go wrong even if not yet emerged for the
customer; we can act and solve it.

Figure 10 shows a sample Heap dump of an application, as illustrated, it
shows the number of objects against each type and the Heap usage
accordingly.

The Heap dump is a capture of the Heap usage at a specific time, so it only
captures what objects were available at only certain point of execution,
thus; it does not represent the overall status of the application, not even a
close clue, it only shows at a certain point how the application is doing, it
could be now going not bad, but we cannot know if there is something
wrong about to happen

32

www.manaraa.com

i Overview |EZ default_report org.eclij mat. i | il =i

gram =2 |
Class Name -Objects Shallow Heap Retained Heap
2o <Regex> <Numeric> <Numeric> <Numenc> |
@ java.lang.String 11 494 275 856 >= 853 232
@ char(] 10 205 661 072 >= 661 072
@ java.util.HashMapSHashMapEntry 3764 90 336 >= 433 744
€@ org.bouncycastle.asnl.DERSequence 2771 88 672 >= 149792
@ byte[] 2619 551 592 >= 551 S92
@ java.lang.Integer 2501 40 016 >= 41 360
@ java.lang.Class 2229 49 048 >=1003 272
@ org.bouncycastle.asnl.DERObjectidentifier 2129 34 064 >= 36 760
@ int[] 1463 106 008 >= 106 008
@ org.bouncycastle.asnl.DERSet 995 31 840 >= 79552
@ java.lang.Object(] 972 62936 >= 399 248
@ java.util. ArraylList 874 20976 >= 326104
@@ org.bouncycastle.asnl.DERPrintableString 862 13792 >=13792
@ android.graphics.Rect 811 19 464 >=19 576 \
@ java.lang.String[] 780 43984 >= 59824 \
@ java.util. HashtableSHashtableEntry 757 18168 >= 42072
@ android.graphics.Paint 682 38192 >= 38816 '

@ org.bouncycastle.asnl.x509.X509Extension 506 8 096 >=8096 |
@ org.bouncycastle.asnl.DEROctetString 506 8 096 >= 32104 \
@ android.widget.LinearLayoutSLayoutParams 504 24192 >= 24192 ’
@ org.apache.harmony.security.x501.AttributeValue 497 19 880 >=114 592 !
@ org.apache.harmony.security.x501.AttributeTypeAndValue 497 7952 >=125464 \
@ android.text.TextPaint 490 35 280 >= 35280 kS
@ org.bouncycastle.asnl.x509.Algorithmldentifier 384 9 216 >=9216
@ org.apache.harmony.luni.util. TwoKeyHashMapSEntry 377 12 064 >= 44 544

¥
@ android.view.View[] 280 17 608 >= 46 376

Figure 10: Objects distribution

As said, this is helpful whenever an issue rises and must be fixed, the Heap

dump is a consuming operation that cannot be done too frequent since it
needs resources to operate.

33

www.manharaa.com

THREADS DUMP

As shown in figure 11, Threads dump provide an image for the available
running/blocked threads. From Threads dump, we can know instantly what
threads are running. This technique is helpful to track performance issues
that are not related to memory.

"Thread-1":

waiting to lTock monitor Ox00007fa948003708 (object Ox00000007cl4ed4c30, a DeadlockfFriend),
which s held by "Thread-0"

"Thread-0":

waiting to Tock monitor Ox00007fa948005e68 (object Ox00000007cldedcdd, a DeadlockfFriend),
which is held by "Thread-1"

Java stack information for the threads listed above

"Thread-1":

at Deadlock$Friend.bhowBack(Deadlock.java:17)

- waiting to lock <0x00000007clded4c30= (a DeadlockiFriend)
at DeadlockiFriend.bow{Deadlock.java:l4)

- Tocked =0x00000007cl4edcdl> (a DeadlockiFriend)

at Deadlock$Z.run(Deadlock.java:32)

at java.lang.Thread.run(Thread.java:662)

"Thread-0":

at DeadlockiFriend.bowBack(Deadlock.java:17)

- waiting to lock =0x00000007cldedcd4l= (a Deadlock$Friend)
at Deadlock$Friend.bow{Deadlock.java:14)

- locked =0x00000007cl4e4c30= (a DeadlockiFriend)

at Deadlock$l.run{Deadlock.java:29)

at java.lang.Thread.run(Thread.java:662)

Figure 11: Threads stack Trace

Now, if objects keep being promoted to the “Old Space” if finally full,
garbage collection is triggered, this time of a different type, called “Major
Garbage Collection” also known as “Full GC”. As the minor GC it is a “Stop
the world” action,

34

www.manaraa.com

but since the size of the Old Space is much bigger than the Young Space,
it is a costly operation, it will take longer than the Minor GC, thus a time
consuming operation.

This research is going to present with a simple example, how could
performance issues rise in the course of the application and are related to
the code of the application or due to the configuration of the application
itself.

This is important before starting to present any solution, in order to simplify
the understanding of solutions afterwards.

It starts here...

Here are the following scenarios to put us all on track with how issues rise
at the customer’s side and how do application owners (precisely
development) reacts to such issues.

A customer let’s say X, has different users using the application, with time,
users either start feeling that the application is less responsive and slower
than usual. Users start complaining. With time, issues may become
intolerable, so a complaint is sent to the customer’s support/IT department
to check the issues out.

Customer’s support team receives the complaint and starts checking out
the application, which not much to do about, so they start checking the
server itself and its resources. This actually could give wrong solutions, for
example; a CPU that is fully used could be interpreted that it is needed to
increase the number of CPUs. A fully occupied memory may give wrong
indication to increase the available memory.

Machine’s resources are limited, increasing the available resources is not
always the solutions on the contrary, and doing that should have a stronger
justified reason.

35

www.manaraa.com

The work is going to explain how the Java platform manages its own
resources.

1.25 3.9 JVM and Physical Machine Resources Sharing
Before knowing how to solve problems related to the resources, it is
important to know how the JVM gets its resources and how they are
consumed.

OPERATING SYSTEM

Figure 12 : Basic Java Application Architecture

Java applications are always hosted within Java Virtual machine (JVM),
this gives the Java language superiority over other programming
languages. This is illustrated in Figure 12.

Upon starting, the JVM request some resources from the “Operating
System” in order for it to manage the application(s) it is going to host.

For instance, the virtual machine needs memory and CPU; let’s talk about
the memory aspect.

Let’s take the following scenario as an example:

36

www.manharaa.com

The Physical machine has a memory of about 3 GB of RAM. The
application administrator chooses to set up the memory in accordance to
the available memory, so if there are other programs or for example the
database is also available on the same server, then approximately not
more of 60 % of the available memory should be allocated to the
application.

In brief, let us consider the application reserved about 1.5 GB of RAM; this
amount is the maximum amount of memory to be reserved by the
application. Now after the application starts, JVM reserve an initial portion
of the memory to the application, let’s say; 256 MB of RAM, with time it
may need more and more, so the memory of the application keeps growing
and growing.

If the application needs memory more than the maximum reserved, the OS
will shut the JVM along with the application down because it is requesting
more than what is allowed, if this is allowed, then it will affect other
applications and may prevent other system processes from being able to
run, that's why the Operating system chooses to shut it down.

But why after that someone done some estimation regarding the needed
memory of the application, more memory is needed? Didn'’t the application
owner recommend a recommended memory size?

What really caused this issue, what could be the causes of memory is not
sufficient?

1.26 3.10 Memory Issues

As this work explained previously, if the application needs more memory
than what it is allowed to reserve, then the application will be shut down,
then someone could think that this is very likely to happen. This research
will now explain that when the application is shut down because of the
memory, it is not really as what it seems.

37

www.manaraa.com

When the application’s process gets terminated because of a memory
related issue, it could be because of two reasons:

1. Insufficient Memory.
2. Inefficient usage of memory by the application.

These are two important concepts to classify performance issues related to
memory

3.10.1 Insufficient Memory
Applications may crash (stop) because it needs more memory than the
maximum configured/reserved memory for the applications.

Someone could simply say, well we can increase the memory, that could
be true, but till when? We should know that memory (RAM) in any machine
Is a costly resource and it might not be feasible or even reasonable to ask
the customer of the application to keep increasing the available memory for
the application each time it needs more.

What really should happen is that the application’s owners (developers)
should define the scale or range of what this application needs, example;
this application is classified that it needs memory up to 4 GB, 2 GB, 16 GB
or whatever, what is important as said is to point out this information to the
public or for each specific customer.

It is very important that this should be defined upfront, let’s take another
example, and suppose that the application is only supported on Linux
operating system, would the application owners hide such important
information? Or even that it could only run on a 64bit machines not on
32bit.

So as this information sounds very critical to be known by the customer
prior to buying the application, it is also important to declare how much
memory this application is expected to need.

38

www.manaraa.com

So, someone could say now it's the role of the application’s owner to
specify this, the answer is yes, and also yes it would solve the problem, but
not very precisely.

How could application’s owners (developers) recommend the memory
needed by the application?

It's not an easy job, the application developers could monitor how the
application behaves in term of memory usage or even other resources
usage which this work will not point out to, such as CPU usage, network
usage, 10 usage and DB usage.

IHewlPermGen

Size: 2,165,440,5128 Used: 292,084,9928
Max: 3,598,057,4728

2,000 MB+

T

1,750 MB

1,500 MB+

1,250 MB 1

1,000 MB 1

750 ME

500 MB1

250 ME

oMe

2:49:00 PM 2:49:30 PM 2:50:00 PM 2:50:30 PM
i Hean size W Used hear

39

www.manharaa.com

Figure 13: Heap memory normal usage.

For instance, Figure 13 shows the memory usage for an application, the
developers could keep monitoring such readings about the memory while
using the system normally.

This simulation of usage could give the developers an indication of how
much the application needs memory, which is the output that they wish to
recommend for their customers.

At this point, the application’s owners are somehow comfortable with these
recommendations, so they will provide the following necessary findings
about the application:

v" Work on Linux operating system.
v" Work on 64 bit
v' Recommended maximum memory size is for example: 2 GB.

This reliefs the application’s owners from surprises later on, but does this
mean that there will be no memory issues for the application? Does this
mean that the customers will not suffer from the application being slow or
down because of memory issues that are classified of “Insufficient

Memory”

The answer to this question is yes but up to 70% - 80%, still not 100%
coverage.

This is maybe due to the following reasons:

v Testing of the application may not have covered all of the scenarios
of the business of the application.

v Customers may come up with scenarios that the developers & the
application’s owners could have missed.

40

www.manaraa.com

v Load testing was not sufficient, the number of users that may uses
the system may increase in a way that could increase the usage of
the memory, hence, memory won’t be sufficient anymore.

As we noticed, it's not an easy job at all. It requires tremendous efforts to
come up with recommendations for the best memory setup.

So, for instance, if the customers deployed the application on the server
and starts using it, if the recommended memory is found, an Out of

Memory error means that it’s time to increase the memory resource for this
application to keep functioning as expected.

41

www.manaraa.com

3.10.2 Inefficient Memory Usage

This work explained in the previous section what is meant by an “Out of
Memory” error and that it could be caused since no sufficient memory
available or incorrect configuration of the application’s memory.

Now this work will explain the other possible cause for the “Out of
Memory” error, which is the “Inefficient Memory Usage”.

Memory is available and it should be sufficient for the application, but
suddenly it becomes not sufficient because it is being highly used but
inefficiently by some of the application’s processes, giving a false indication
regarding the need for an increase for the memory of the application.

Due to this, server's administrators may choose to increase the memory
available for the server and in this case, they are not solving the real cause
of the issue, most probably when such issues occur, it is highly possible to
recur.

Such misleading error “Out of memory” that is classified of “non-efficient”
usage of the memory, the customer do not need to deal with, it should be
sent for the application’s developers to do some investigation to know the
real cause for this and solve it once and for all.

It is mainly related to either:

v" Some parts of the applications may not be designed or developed
efficiently.
v Correct memory setup, but not suitable memory cleaning algorithm.

Both reasons outlines inefficient memory usage, meaning that; memory
usage is high in some cases or some areas while it shouldn’t be.

For example, a process which may be known that it shouldn’t consume
more than let’'s say 100MB, it is consuming up to 400MB, which as it
sounds really bad, because there are other processes for different users
that needs also memory usage.

42

www.manaraa.com

Memory currently being used for
updating bank accounts.

Figure 14: Big process memory consumption.

The application’s owners or developers could choose to do some
enhancements on the memory usage of an application, this process is
called Tuning.

As Figure 14 illustrates, the memory usage for updating banks accounts
nearly takes up to 400MB which the developers may consider it too much
and think that they could enhance it so that it only uses up to 100MB of
memory maximum in order to best utilize the memory resource.

43

www.manharaa.com

The tuning this time is through enhancing the code written. This way, tuning
will leave more memory to serve other areas of the application and even
more users.

To summarize, the previous section was explaining memory issues related
to bad design of parts in the code, which may lead to inefficient memory
usage.

The research will point out to the second cause of such problem, which is:

“‘Memory is setup well, but the chosen or the default cleaning
algorithm is not suitable”

Before drilling down into this point, the work has to explain again in brief the
cleaning process.

Each stage of the application execution and each process within the
application need some resources in order to run. Since many processes
could happen in the course of the application execution or even in seconds
of time, allocation for memory for each process is done accordingly.

Memory allocated for each process within the application is being released
within a process called “Garbage Collection”

In the following sections, the research will show examples of some
programs producing different memory outputs.

Figure 15 illustrates an efficient usage of the memory by an application. As
it is shown, the memory that is being used is shortly released to be used by
another process or by another user.

44

www.manaraa.com

Heap | PermGen X

Size: 110,362,624 B Used: 58,815,204 B
Max: 1,503,657,984 B

100 ME {

75 MEH

50 MBH

25 ME

omMB

08:04 08:05 08:06 08:07 08:08 08:00

O Heap size BlUsedheap

Figure 15: Efficient memory usage, no possible leak.

This is an efficient use of the memory, the spikes shows the usage of the
memory, the spikes are followed with a decrease in memory usage,
meaning that the used memory is now freed-up. Memory is

currently being

used for the

Size: 131.293.1848 Used: 66,137,649 8 task.
Max: 1.073.741.8248

125 ME

100 ME

| Memory reserved
| for a process gets
released
afterwards.
Meaning that:
aarbaae

75 MB+

50 MB+4

25 MB+

oOMe

m:l’n:m m:?h:m m:l‘n:)n mnh:m 0951’0:4{)

45

www.manharaa.com

Figure 16: Efficient memory usage, no possible leak.

The process of which the memory usage decrease after the process is

done is called garbage collection; it makes the usage decrease, so to show
this more specifically:

Figure 17 illustrates an inefficient use of memory were the memory used is
not getting released and so, it cannot be used by other process.

Size: 3,155,755,008 B Used: 3,116,301,720 B

Max: 3,221,225,472 B

3,000 MB

2,500 M8+ |

—
2,000 MB 4 [

[
1,500 M8+ [J_F

1,000 MB /f

500 MB- P

0 MB+ T - -
6:50 PM 7:00 PM 7:10 PM 7:20 PM

Heap size @ Used heap

Figure 17: Non-efficient memory usage, possible leak.

The figure shows that memory is increasing over time without decreasing,

which is very un-normal, but we should understand first when memory get
released and when it’s not.

Let’s return to our previous example, updating bank accounts for users,
suppose that this operation take 5 minutes to accomplish and uses about
300 MB of memory, what should happen here is that after the process is
done, the 300MB should be released to be used again for another process.
It should, meaning that this is the expected behavior, but is there a case
where they don'’t get released back?

Actually there is, it happens a lot and when happens, nothing you could do
about it. This is referred to as “Memory Leak”.

46

www.manaraa.com

This happens most of the time when code is not designed well, in which
some of the Java objects keeps referencing the objects of the done
process, when this happens, the garbage collector sees that there are
other objects referring the objects of the process, at this point, the garbage
collector is unable to reclaim back the memory of this process, hence
memory won'’t be released, this is called a leak in the memory. Memory
leaked won’t be released until application is restarted.

But what is the harm from this, if a memory leak happens; does it mean
that the application will not be able to run?

With time yes, so if the initial application memory needed was 100 MB, it is
now 300 MB since memory reserved was not released. This means that
less memory is now available for the application which means that with
time, it is very likely that an “Out of Memory” error will happen.

As shown in Figure 18, it shows a memory leak for an application. It shows
that after a process completes, memory does not return back to original
Heap size, meaning that; the application lost over 1 GB as the figure shows
and cannot be reclaimed back throughout the whole application.

-.;1_e_a—p- ‘ PermGen]

Size: 3.722,444.800 B Used: 3.388.382.8328B
Max: 3.722.444.800 B

\VV A

New Memory Initial
Size

Original Initial

Memory

11:55

[Heap size Usec

47

www.manaraa.com

Figure 18: In-efficient memory usage, possible leak.

So in brief, an application not designed well could result in:

v" Inefficient use of memory, as an example to remind us all: a process
that is using 300MB while it should be only up to 100MB.

v Code not designed well that keeps referencing objects and not
releasing them.

This is how the “Out of Memory” errors are classified, either:

v" Insufficient Memory available.
v' Inefficient Memory usage.

Now that we defined the categories, there should be no problem, but again
there is.

When an application crashes (shuts down) because of a memory issue, the
error thrown is:

“Out of Memory” error, there is no way to know if the memory really
insufficient or because of inefficient use of memory.

In order to know the real reason behind this error, the developers have to
do some thorough investigation, which is time consuming.

The researcher will present a way to know such detail and even more, with
the help of a tool newly designed that is built on some algorithms that will
be explained separately.

In order for the researcher to explain his theories and points, it is needed
first to explain how the garbage collection process happens.

1.27 3.11 Object’s Memory Allocation & Lifecycle

Garbage collection is a process about reclaiming objects that no longer
needed, this process is triggered automatically by the JVM in a specific
scenario.

48

www.manaraa.com

Allocation is the process of allocating memory to certain process or task.

Object Allocation

Every time a new object

is created, itis placed in
the Eden Space.

Eden

eIl —

Survivor Spaces S

— Young Space

Phase 1

Figure 19: Object Allocation within Heap memory — Phase 1

As shown in Figure 19, as soon as objects are created, they are placed in
Object Allocation

i
EI. D D D D DDD Eden Space

Survivor Spaces

the Eden space. Young Space

49

www.manharaa.com

Figure 20: Object Allocation within Heap memory — Phase 2

With time, Eden Space gets full with objects and no more objects could be
allocated into the eden space, so this space should be cleared out in a
process of two stages:

1. Remove\Delete objects that are no longer used (Unreferenced
Objects).

2. Move objects that are still used to the “Survivor Space” since they are
still referenced.

This type of garbage collection is called Minor Garbage Collection.

When the minor garbage collection is triggered, it checks all objects in the
Eden, if an object is still referenced, it won’t be deleted, which means it is
currently in use. Referenced objects will be moved to another space called
“Survivor Space” meaning; object survived a garbage collection.

Object Allocation

Eden
el AANANER =

Survivor Spaces

Figure 21: Objects allocation from Eden to Survivor Spaces

At certain point, after the minor gc is finished, Eden Space is emptied.

The process is repeated as long as the program is executing, newly
created objects are kept assigned to the Eden Space, as soon as it is full; a
minor garbage collection is triggered.

50

www.manaraa.com

A normal program execution witnesses many and many Minor garbage
collections.

At the second or later minor garbage collections, objects that were moved
In a previous garbage collection to survivor spaces, will have their age
incremented by one and will be moved to the next Survivor space, which
we need to remember, still part of the Young space.

Meaning that, each time an object survive a minor garbage collection will
move to the next Survivor Space. At the end of each garbage collection we
can notice that Eden Space always cleared out and at least one Survivor
space as well.

Object Allocation

I [

Eden Space

[a Surviver Spaces

Figure 22: Object Allocation within Survivor spaces.

As shown in Figure 22, B is the only object in this example which survived
as illustrated more than one minor gc, in this case; 2 garbage collections

An important thing to point out here is that when the garbage collection
process is triggered, it means nothing else is running, program execution
pauses during the garbage collection, which is unnoticeable.

51

www.manaraa.com

If one of the still referenced objects exceeded the maximum age threshold,
“Tenuring Threshold”, the objects will be moved to the “Old Space” or
“Tenured Space” in a process called “Promotion”.

If the age threshold “Tenuring Threshold” was set to 15, then when an
object age reaches 15 and is still referenced, it will be moved out of the
Young Space to the Old Space.

Object Allocation

‘ I

Tenured Space (Old Space)

Eden Space

M Surviver Spaces

B survived all Surviver Spaces, finally it will promoted to the Old Space.

Figure 23: Objects Promotion

So in brief, allocation is when allocating new objects into Young Space
(specifically into Eden)

Promotion: Moving objects from Young Space to Old Space.

Allocation

52

www.manaraa.com

L allocations

Figure 24: Objects Allocation

Allocation: When new objects are allocated memory in the Young
Generation.

Promotion

Promotion: If objects survived a specific threshold of minor garbage
collections, they are moved to the Old generation from the Young
generation in a process called promaotion.

i Promotion

Figure 25: Objects Promotion

1.28 3.12 Garbage Collection Log

With each garbage collection activity, a log is generated accordingly. With
each line of log, it tells us a lot, from the freed memory to the available to
the different areas of the heap.

As an example, here is a sample line of the log file:

Sample GC Log Output

53

www.manharaa.com

4.636: [GC [PSYoungGen: 230400K->19135KB(268800KB)] 230400K-
>19135KB(2058752KB), 0.0635710 secs]

If we zoom in on the important information in the GC Log:

230400KB->19135K(268800K)
268800KB >> is the Young generation size (256 MB)

230400KB >> Is the Young Generation size BEFORE garbage collection
(255 MB)

19135KB >> is the amount of memory FREED after garbage collection (18MB)

The numbers before and after the arrow (e.g., 325407KB->83000KB from
the first line) indicate the combined size of live objects before and after
garbage collection, respectively.

1.29 3.13 Collection Types
Let’s in brief summarize what spaces the garbage collector is responsible
of:

Young generation: Most of the newly created objects are located here.
Since most objects soon become unreachable, many objects are created in
the young generation, and then disappear. When objects disappear from
this area, we say a "minor GC" has occurred.

Old generation: The objects that did not become unreachable and
survived from the young generation are copied here. It is generally larger
than the young generation. As it is bigger in size, the GC occurs less
frequently than in the young generation. When objects disappear from the
old generation, we say a "major GC" (or a "full GC") has occurred.

1.30 3.14 What Minor GC tells us?
Minor Collection is triggered when then JVM is unable to allocate space for
new objects.

54

www.manaraa.com

Young space is where the short living objects are placed.

It is called young because it is the place where objects which live for a
short period of time are placed in.

Most of the objects are shortly living objects, which means that they live for
a short period of time, for this reason, most of the garbage collections
activities are of type “Minor GC”.

The Java virtual machine (JVM) will be suspended for the duration of the
minor garbage collection; it's a stop-the-world activity, even that they are
considered fast garbage collection.

Now since minor garbage collections are too many and they are fast, they
affect the overall response time of the application. Let’s always remember,
it is fast because Young space is smaller than Old space, hence, it is
quicker.

They are too small to cope with all the objects available, that's why minor
garbage collection is triggered very frequently.

Whenever the application is under heavy load, minor garbage collections
could be very frequent; many frequent minor garbage collections could be
as bad as a single long-lasting one.

So, it is not good to have frequent young garbage collections, the
researcher will explain the possible root causes for the frequent young
garbage collections:

1. Too small Young space considering the application’s load
2. Too many objects allocated very quickly.

55

www.manaraa.com

3.

In both cases, young space fills up quickly, this triggers minor garbage
collection

EI' |:| |:| |:| |:| I:H:H:l Eden Space

Survivoer Spaces

Young Space

Figure 26: Minor garbage collection

56

www.manharaa.com

Chapter Four: The proposed solution

1.31 4.1 Chapter Introduction - How this work helps out!

Again, it should be known that there is no other mechanism to depend on
to know the overall progress of the application; it is very hard and costly to
depend on other mechanisms as:

Heap Dump for available objects within the memory, it can be configured to
be an automated process to generate a dump within a specific interval, but
this is very consuming operation especially on a production environment.

Memory Profiling: Profiling is good but it is only efficient per process, to
monitor the memory consumption of an operation.

CPU Profiling: same as the memory profiling.

Let us take an example on a performance problem and how things could be
mistakenly interpreted.

Suppose that we have an application where the user is trying to submit his
information to the application. The customers started to experience some
delays in the response, as a result, the application developer’s starts with
an approach to record the duration of each process to know where the
bottleneck is.

They seek the round trip time of the process, which is not costly, but it
won’t be a straightforward operation, meaning that; if a new business
process is introduced, then there is no direct way to measure it without
doing manipulation on the code.

57

www.manaraa.com

While this approach gives an indication of the response time, it might be a
false one, meaning that a high response time may not be caused by the
operation itself but maybe caused by other operations causing the server to
slow down, thus giving wrong indications and affecting corrective decisions.

As another example, the application could be performing well, but suddenly
with the correct parameters, things could go wrong, it might be either
because of wrong configurations for the memory or for the garbage
collector.

So we need a way to catch the source of the issue, or at least, as in this
case, we need a way to know how the application is behaving without or
even before the customer starts complaining.

The theories and ideas within this work helps in solving the problem which
faces the application developers in efficiently reading the gc log file trying to
discover the patterns of the memory usage/setup and the garbage collector
and finally trying to know if there is a problem or not.

1.32 4.2 Garbage Collection Log Analyzer to the rescue!

After many researches that were done by the research on the best way to
monitor the performance of a Java based web application, many ideas
cross the researcher’s mind.

If No one is complaining, this does not mean that everything is fine.

We were looking and the problems always from the wrong side, we were
reactive to the problem rather than proactive.

58

www.manaraa.com

This approach and way of thinking should be changed, we should be
reactive before any problem rises, an application performance that seems
good may not be actually good, customers who are fine with the
performance of the application do not know what is really going on behind
the scenes, thus, may give wrong indication to the software owners that
things seems fine.

Problems maybe there, but, no one may know about it, and if we needed to
do so and monitor each operation then this is unreasonable and undoabile.
Getting out with a feasible approach was very tricky and hard in a way that
the application owners were comfortable with the fact that if customers do
not complain now then this means that everything is hormal

From the researcher’s experience, this is not quite right, from his
experience, he learned that the performance issues are like a “time bomb”,
if it's there and left, it would eventually explode, the only difference here is
that, we did not know about if it’s there, or we did not have the mechanism
to know, until now. So, again there might be an indication to an issue, but
with the right circumstances and parameters, it will appear eventually, then,
it would be a severe issue that needs to be solved right away.

One of the major and most important activities within the life cycle of an
application is garbage collection, where in brief; it's the process of cleaning
objects no longer needed and maintaining and controlling old objects for
the processes that still needs them.

The collection operation and its details can be documented and reserved
for getting back to it later on; it shows the activities of the garbage collector
and the available/consumed memory at each stage of the collection.

An efficient garbage collection process helps maintaining the application’s

performance by which it does not adds additional cost or complexity to the

application, but also, if there are some issues with the application, it can be
known from the behavior of the garbage collector.

59

www.manaraa.com

But also, many times, the application suffers from performance issues from
incorrect configuration of the application, meaning that the memory that is
configured for the application maybe insufficient so it needs to be
increased.

In other areas, memory that seems insufficient maybe because the memory
usage is inefficient due to memory leak.

Customers or even technical developers may not bother to check for things
that are not very critical, meaning that, as far as that the customer seems
fine, and then nothing should be done.

The researcher supports his ideas and theories with a tool that helps in
solving the problem that faces the application developers in efficiently
reading the gc log file trying to discover the patterns of the memory and the
garbage collector and finally trying to know if there is a problem or not.

1.33 4.3 Reading GC Log file
The problem here is that reading such file is hard; it is very technical and
requires tremendous efforts to analyze and understand.

There are many approaches/tools designed currently, some of them are
mentioned

From the researcher’s experience, we can depend on this file to check the
overall progress of the application in which:

- The rate of collections.

- The pauses duration.

- Memory before collection.

- Memory after collection.

- Object’s life cycle (Its trip between the different areas of the Heap
memory until its death)

- Memory allocation.

60

www.manaraa.com

1.34 4.4 Yesterday’s weather

From the customers’ perspective, the application is considered performing
well until users start experiencing a noticeable slowness within the
application. This theory is correct only from the customer’s point of view,
but when it comes to memory related issues, the same concept might not
hold. Memory issues part of the application’s performance have different
interpretations for the current situation.

Application may be suffering from memory issues but at this point, it is un-
noticeable. Meaning that in many cases, memory problems (if exist)
gradually increase with time until it reach a point where it starts affecting
the performance of the application and finally become noticeable for the
users.

Memory related issues may even be available within for long time within
some applications and may not be noticeable until certain scenarios are
available.

We need a new approach to catch up these issues before a low severity
Issues becomes a real severe issues, this work does not intend to predict
memory issues, but it aims to report memory issues with a minimal cost
with high level of correctness. The available tools does not provide a
way to analyze the file, it rather provide some discrete readings that
still the developer need to do an analysis job which might be hard and
time consuming.

The only approach that can give us such readings is the Garbage
Collection Log.

So, this is where the advantage of the garbage collection log lies in which,
if there are misconfigurations for the memory, CPU, the garbage collector
and its activities we can know about it and predict how it will behave with
specific parameters.

61

www.manaraa.com

This shifts the way of solving the performance issues from being corrective
to preventive, from being reactive to proactive.

As said before, other means of performance monitoring and measurements
shows the problem but not the root cause of the problem, making them not
much of a help.

How the new approach helps out from both sides:

e Corrective Actions: With the help of the theories suggested by this
work, the researcher designed a tool based on these theories to find
performance issues if exist and give recommendations on how to
solve them.

e Preventive Actions: It provides precautions in which if it finds
anything that it seems may cause performance issues, it will report
them and give recommendations on how to fix future issues.

Both are supported also with the use of visual charts to help give the
bottom line of the status of the health of the application.

An important thing to remember here, the tools developed so far that reads
the gc log are designed to illustrate the different outputs of the log visually,
still it is required that a developer study it and analyze the log file, this work
will come up with some theories based on current rules from Oracle and
provide a tool that reads up these outputs and also suggest what should be
done in an automatic way, rather than having developers analyze and
study the log file.

The parameters to configure the settings of the application are many, they
are very critical and important, if not setup correctly could lead to a
struggling application. Because of these reasons, it is high probable that
the application developers would mistake with the configurations of the
application; therefore, we need a tool that is built on the standards to help
figuring out the following:

62

www.manaraa.com

1. Check if there are some missing parameters. (Section 4.4.1)

Check if there are some wrong parameters used. (Section 4.4.1)

3. ldentify usage of parameters causing performance issues and
suggest the alternatives. (Sections 4.4.2.1 and 4.4.2.2)

4. Identify the application’s health and how it's performing. (Sections
4.4.2.1 and 4.4.2.2)

N

In order to for the tool that the researcher has developed to function well
and to read the necessary garbage collection output.

The researcher helps out with his tool to discover if things are set-up right
and the JVM parameters to produce garbage collection log is found.

4.4.1 Prerequisite Parameters

As said, one of the roles of the new tool is to discover if there are some
missing or wrong parameters, let’s start with the most necessary ones and
explain the importance of their existence on the application’s performance.

If necessary parameters are not found, the tool will issue a warning to turn
it on using the below parameters.

Logging Parameters

The new tool cannot work at all without first making sure that there is a
constant log file for the garbage collection process to build up the needed
statistics and findings regarding the performance of the application.

“-Xloggc:c:\gclogFile.vgc -XX:+PrintGCDetails -
XX:+PrintGCTimeStamps”

The first parameter “Xloggc:c:\gclogFile.vgc” is used to

Used to allow logging (writing) the activities of the garbage collection
process on a file so that the new tool could analyze this log.

63

www.manaraa.com

It is highly recommended that in order for the new tool to give a high level
of accuracy, the produced log file should be of a running application for at
least 24 hours of time, this is recommended because the use of the
application cannot be determined against a specific time of the day; most of
the applications have a time where there is a peak usage of the application
throughout the day.

Current approaches reads GC Log file only at application’s crash which
again is reactive rather than proactive, also as said, the available tools
does not provide a way to analyze the file, it rather provide some discrete
readings that still the developer need to do an analysis job which might be
hard and time consuming.

The second one “-XX:+PrintGCDetails” is used to enable logging the
details of the garbage collection process which includes the memory before
and after, different areas of the heap and so on.

The third parameter “-XX: +PrintGCTimeStamps” is used to enable
logging the time and the duration of the collection, this enables us to know
the pausing duration of the collection.

These parameters and other parameters that this work will be explaining
are all defined from within the Java language itself, each has a specific
need.

This is a sample output for one of the garbage collection activities:

4.636: [GC [PSYoungGen: 230400KB->19135KB(268800KB)] 230400KB-
>19135KB(2058752KB), 0.0635710 secs] [Times: user=0.08 sys=0.01,
real=0.06 secs]

So, if we did not have this parameter “Xloggc:c:\gclogFile.vgc” there
would be no such output.

If we did not have this parameter “-XX:+PrintGCDetails”, then details of
the collection.

64

www.manaraa.com

If we did not have this parameter “-XX:+PrintGCTimeStamps”, there
would be no timing information.

1. Machine Classification & Category

The type of the machine is very important for the application and how it
performs over time.

For instance “server” class machines have hardware specifications and
capabilities beyond the normal machines, which means; deploying the
application on a server-class machine have a different effect than deploying
it on a client-class machine.

As we know servers often have multiple processors and the processing
architecture is very different than normal machines in which we gain the
high computing, response and performance.

Why this is being pointed out? It is correct that the application will behave
better when deployed on a server-class machine, but the researcher wants
to point out that the garbage collection process is also affected by such an
addition. The collection process itself will highly perform in general in this
case; the researcher will explain each in details.

For this reason, the researcher highly recommends to make use of such a
configuration that from his own experience with different applications and
different customers, there are good percentage of them forget to make use
of this parameter.

How this work helps out is by finding possible misconfiguration that could
lead to bad performance and generate a hint message on how to fix such
issue.

For instance, if the machine is a server-class machine and the used
property is a “-client” then this will be caught by the tool in order to make
use of the server capabilities.

65

www.manaraa.com

4.4.2 Garbage Collections & Their Types

JVM periodically calls the garbage collector to remove objects that are no
longer needed. It is triggered by the Young & Old spaces.

Whenever the Young space is filled up, a minor garbage collection is
triggered to clean up the “Eden Space” as this work explained previously.

Whenever the Old (Tenured) space is filled up, a major garbage collection
is triggered to clean up the “Old Space”, what also triggers a Full GC

e Calling System.gc()
¢ Permanent Generation is too low
e Running out of old gen

Let’s start with the minor garbage collection.

Throughout the researcher’s experience with different applications for
different customers, he has found many issues that applications suffer from
due to configurations of garbage collections or even due to miss-
interpretation of the garbage collection log.

4421 Minor Garbage Collection Activities to the Rescue

Before drilling into minor collection type, there is something important that
should be known, which is: the life-time of objects.

Objects life-time plays a significant role in the allocation and clean-up
process. For instance, most of the objects tend to have a short-life time
since most of the processes do not span throughout the application’s life-
time.

66

www.manaraa.com

Here is an example about the objects distribution against their life-time.

Number of 7
objects

Lifetime of objects (ms)

Figure 27: Objects distribution against time.

Newly created objects are intentionally moved to the Eden area of the
Young space to act as a buffer zone for objects before moving them into
the Old space, in other words, objects that are in the Young space and
survives a specific threshold are then called “Old objects” and hence need
to be moved to the “Old Space”.

As said previously, minor garbage collection occurs when the Eden space
gets fully occupied, so in a process to clean up this area of heap, a minor
garbage collection is triggered.

It is called minor because the Eden space is usually a small space and
requiring cleaning it requires small amount of time.

Minor garbage collections are not very costly, but in the same time it is a
“stop-the-world” operation which requires stopping the execution of all
available threads of the application, only the thread responsible for the
clean-up is left to execute, so it is a costly but a little.

Things could go bad when the number of minor garbage collections is very
high which may result in intolerable “stop-the-world” events, which means
bad performance.

So, what this work will offer is a way to know whether the number of minor
garbage collection activities is considered normal or not.

67

www.manaraa.com

The dilemma that faced this research with investigating and researching
minor garbage collections is that it is normal to have many minor garbage
collections, this is normal, so how could we know in different cases if this is
really normal or not?

So the researcher reached out to the following theory:
GC tuning is not required if: [6]

« Minor GC is executed quickly (nearly within 50 ms).
« Minor GC is not too frequent (nearly not less than 10 seconds).

Such readings are not acceptable unless if the Young space is too small,
other than that, this is a non-acceptable output.

So, using the tool, the researcher will report such findings with what to do
with each

v If Minor GC is taking much time, then we should check the Young
space, if it's larger than expected (should not exceed 40% of the
Heap) [7], then this is the explanation, hence we need to decrease
the Young space.

If things are set up normally, if the size of the Young space is
reasonable, should try to use the following collection type:

o -XX:+UseParallelGC [8]

This triggers parallel collection for the Young space to decrease the minor
collection execution time. This is only possible if the machine is a server-
class machine. It triggers more than one thread to clean-up the Young
space.

68

www.manaraa.com

v If Minor GC is too frequent, (Not more than once within 10
seconds [6]) then we should check the Young space, if it's too
small, then this is the explanation, hence we need to increase the
Young space.

If things are set up normally (Young Space within normal range), then
a Heap dump analysis should be done, there could be some objects are
not getting freed-up which could highly mean memory leak could be
present.

4422 Major Garbage Collection Activities to the Rescue

As pointed out previously, objects that survived specific minor garbage
collections are then moved to the Old Space.

When Old space fills up, full (Major) garbage collection occurs to free up
the Old space from objects that are no longer referenced.

Tuning for Full GC is required if:

« Full GC is not processed quickly (within 1 second).
. Full GC is frequently executed (multiple times within 5 minutes).

So, if Full GC is too frequent, then, the Old Space should be increased.

v If Full (Major) GC is too frequent (Once per 10 minutes [6]), then
we should check the Old space, if it's small, then this is the
explanation, hence we need to increase the Old space.

If things are set up normally (Old Space within normal range), then a
Heap dump analysis should be done, there could be some objects are not
getting freed-up which could highly mean memory leak could be present.

v" If Full (Major) GC is taking too much time (Not processed in more
than 1 second [6]), then we should check the Old space, if it's too big,
then this is the explanation, hence we need to decrease the Old
space.

69

www.manaraa.com

If things are set up normally, if the size of the Old space is
reasonable, should try to use one of the following collection types:
« -XX:+UseParallelOIdGC [8]
o -XX:+UseConcMarkSweepGC [8]

This triggers parallel collection for the Old space to decrease the major
collection execution time. This is only possible if the machine is a server-
class machine. It triggers more than one thread to clean-up the Old space.

There are two important concepts here to mention that would help
application owners and developers to make up their decisions about the
best collection type to choose.

1.35 4.5 Collection Types based on the need:
The types of collections are divided based on the usage need, classified
as:

Throughput Need:

Meaning that, if we want to improve the performance of the application and
there are many numbers of processors.

It focuses on maximizing the number of tasks done within a specific time,
example:

« The number of transactions completed in a given time.
« The number of jobs that a batch program can complete in an hour.
. The number of database queries that can be completed in an hour.

It does not focus on quick response time.

In order to enable this, use this option alone:

70

www.manaraa.com

-XX:-UseParallelOldGC [9]
It will enable Parallel in Old & Young.

If we wish to enable Parallel collection for only the Young generation, we
can use this option:

-XX:-UseParallelGC [9]

Beside either of the mentioned parameters, we can use the following option
that triggers the number of threads to work in parallel to do the collection:

-XX:ParallelGCThreads=<desired number> [8]
Responsiveness Need (Low Pause Need):

This refers or focuses on how quickly the application responds to a specific
request, examples:

« How quickly a desktop Ul responds to an event
« How fast a website returns a page
. How fast a database query is returned

These types of applications do not tolerate large pause times. Usually this
Is used on machines with two or more processors in order to share the
resources (processor threads) with the garbage collector so that in
order to omit pauses (stop-the-world).

In another words, in order to clean the Old space with minimized pauses, it
uses a separate garbage collector thread to run side by side with the
applications threads, thus the application does not pause for garbage
collection.

71

www.manaraa.com

To enable this type of collection, use the following option:

-XX: +UseConcMarkSweepGC [9] And
-XX:ParallelCMSThreads=n [10] If this is used, be sure to use the
following parameter as well:

-XX: +CMSClassUnloadingEnabled [11]
4.6 Object’s Lifetime

Objects like anything in life, has a lifetime that imposes a challenge on the
performance of the application.

An object is created when it is needed and destroyed when no longer
needed. As we learned that in Java, the developer has nothing to do with
destroying objects and cleaning them from memory. As stated before it’s
the role of the JVM to manage the instantiation and the cleanup processes
for objects.

Tenuring/Promotion is the process for moving objects from the Young
space to the Old space.

This is normal during the lifetime of the objects in memory, objects that
survives multiple garbage collections are finally promoted/tenured from the
Young space to the old space. What is not considered normal is moving
these objects to the Old space earlier than expected, hence producing an
issue.

More already stated, collecting objects from Old space is a more costly
operation than collecting objects from the Young space, because almost
always Old space is larger, hence reducing the Old space collection as
much as possible means lowering pauses time, which as a result means,
better application’s performance.

How does the JVM do it?

72

www.manaraa.com

Each object that survives a minor collection, meaning that; when an object
in the Young space survives minor collection, its age is increased by one.

According to a specific threshold, when an object reaches the maximum
age threshold, it is then promoted /tenured to the Old/Tenured space.

The age threshold is called “Tenuring Threshold” and the maximum
value is called “Maximum Tenuring Threshold”.

In order to print out the Tenuring distribution for the available objects, the
following parameter should be added.

-XX:+PrintTenuringDistribution

Let’'s check a small part of the GC log file that demonstrates the objects
distribution against their ages:

Desired survivor size 75497472 bytes, new threshold 1 (max 15)

- age 1: 19321624 Dbytes, 19321624 total
- age 2: 79376 bytes, 19401000 total
- age 3: 2904256 bytes, 22305256 total

This means that the current tenuring threshold is 1, meaning first cycle of
gc in the Young space.

It shows objects distribution against their age.

Desired survivor space is 75 MB.

The available objects size in this cycle of collection is nearly: 23 MB.
Each time the Survivor space is emptied, the threshold is reset.

For instance, the desired survivor space is 75MB and the current usage is
23MB, meaning that, the Survivor is not fully occupied, hence, promotion to
the old space is not needed

73

www.manaraa.com

and still they can stay in Survivor space.

When the next minor gc is triggered, upon the Eden space being filled up,
the minor gc scans over the Young space. If the objects in the Survivor
space are still referenced, then they would stay in the Survivor space but
this time increasing their age. So the next output would be:

Desired survivor size 75497472 bytes, new threshold 2 (max 15)

- age 1: 98376 bytes, 19321624 total
- age 2 19321624 bytes, 19401000 total
- age 3: 79376 bytes, 22305256 total
- age 4: 2904256 bytes, 22305256 total

As we can notice, this is the next round (next minor gc) as indicated by
“‘new threshold 2” still the total size of all objects of all ages did not reach
the desired survivor size, meaning that objects in the survivor space still
won’t be promoted to the Tenured space.

If the following appeared in the log directly after the previous lines, it means
that objects are moved out of the Survivor space and that they were
prematurely promoted, which is a bad thing.

Desired survivor size 75497472 bytes, new threshold 1 (max 15)
-age 1. 48376 bytes, 19321624 total
-age 2: 12321624 bytes, 19401000 total

As it is shown, a new cycle started, none of the objects found in the
previous collection exist anymore, this means when objects are
prematurely promoted, the Tenured space will be filling more rapidly,
hence, more major garbage collection is going to happen.

Solution to this issue:

74

www.manaraa.com

- Increase Young space.
- Resize Survivor spaces to allow more objects to survive in the
young space.

If the Young space is already within normal range, then it is recommended
increasing the Survivor space.

This is done by decreasing the survivor ratio.

Default value for SurvivorRatio is 8, lowering it would increase the
Survivor space, hence, avoiding survivor space overflow which as a result
lead to premature promotion.

Premature promotion should be minimized as possible since otherwise it
could cause a Full garbage collection, which is a stop-the-world event
which we are trying to minimize as possible.

The tool would catch premature promotion cases and recommend what
should be done.

1.36 4.7 Memory Leaks
It is one of the most critical and toughest topics among all issues.

What is a memory leak?

It means that the JVM failed over many garbage collections to reclaim back
memory used by objects that are no longer used or referenced.

Meaning that memory that was allocated for objects created to accomplish
certain process that was done were not released because other objects are
still mistakenly referencing these objects, so the garbage collector decides
to skip these objects. [12]

How bad is that?

75

www.manaraa.com

Leaks eat up memory very quickly resulting finally in an “Out of Memory”
error which finally leads up to an application crash.

As said previously, crashes caused by an “Out of Memory” error are very
general, especially when the specific error is Heap error, as said before
could be either because:

- Insufficient Memory
- Inefficient use of memory (such as memory leak)

The Out of memory error caused by a memory leak is categorized under
“Inefficient use of memory”, if this is the case, there is nothing we can do
about it but to investigate the root cause and finally, fixing the code itself.

So, if there is no tuning that could be done for this, why the researcher is
raising such an issue?

Simply because one of the toughest jobs is to find out if an out of memory
error is because of a memory leak or not, this is where this work helps out,
reading a graph to try to know if there is a memory leak or not, is a hard
task to do, so the new approach as well as the tool will facilitate this
decision on the developers.

How to discover?
This research came up with some simple theories to solve this dilemma.

A memory leak is a failed attempt for the garbage collector to free up the
memory reserved over many collection processes.

What is expected from a full garbage collection process is to free up some
memory that can be used for other processes, so if it failed to do that, then
it's a memory leak.

76

www.manaraa.com

Actually memory leaks are the most challenging problems among memory
iIssues, there are many patterns for memory leak. This study only aims to
find the most common memory leak type. It is a very complex task to
identify other types of memory leak from a garbage collection log alone.

As stated previously, the best approach to detect and track a memory leak
Is analyzing a Heap dump of the memory.

Why Memory Leak is related to “Old Space” of the Heap?

According to Oracle, most objects are shortly lived, meaning that they only stay a little time
within the memory, only small portion of objects live a long time [13]. This is a normal or
expected behavior for an application, most of the applications are operation based, meaning that,
a customer who is requesting a specific service from a Forex-Exchange application needs for
example to get the current “Gold” rate world-wide. This is an example of a single operation that
when triggered will need some objects to be executed, once done, objects are no longer needed,
this is an example of what is called a Stateless operation (Stateless objects).

On the other hand, a customer is using banking services from the Internet
banking application, once logged in, customer may choose to do several
operations within the same session that he is using originally, deposit
operation, then maybe money transfer, followed by paying some bills
online. These types of operations simulates the real need for state-full
objects, were some objects that may represent as in this example the
customer’s information, needs to live for the long-term.

From this example and from the reference below, the mostly common or
typical object’s pattern is to have Young objects much more than Old
Objects, i.e.: objects which lives shortly much greater than objects which
lives long time.

What do this have to do with Memory Leak is that, since a leak is a
continuous failed attempt to free-up some memory from the Old space of
the Heap memory, and since Old space of the Heap only contains Old
Objects (objects that have been around for long time) then for this reason,
a leak is related only to old objects.

77

www.manaraa.com

When objects are considered “OLD”?

According to Oracle, objects are considered old if they survived a certain
number (threshold) of minor garbage collections, typically 15, meaning that
objects which survived 15 minor garbage collections are then moved to the
Old space and hence considered Old objects. [14]

This is why the main goal is to focus on Old space of the Heap to detect
memory leaks and not to focus on minor garbage collections.

When minor garbage collection is triggered, the following occurs:

- Eden Space is emptied.
- One of the Survivor spaces is empty.
- With this, Young space always holds short lived objects.

When Full garbage collection is triggered:

- Old Obijects within the Old space that are not referenced
anymore are removed from the Old space.

Rule 1:

- Full Garbage collections should be minimized, since most of the
objects are shortly lived, Young space is always smaller than the
Old space. For this reason, collecting the Old space is more
costly.

As a simple solution, in order to avoid Full garbage collections, we need to
make sure that the Old space is always not fully utilized. One may say is to
increase Heap memory and as a result, the Old space. This is a non-
feasible/applicable solution, it only postpone the issue not solve it.

This takes us to the following question, why Full garbage collections are
triggered?

78

www.manaraa.com

- A process that requires much memory and there is no available
space for this allocation process.

- An un-noticeable problem in the application’s code that causes
an un-noticeable leak in the Heap memory.

Memory leaks are not always related to Full Garbage Collection, a leak
may happen without triggering any full gc. So the most appropriate way of
detecting a leak is reporting the difference between the initial memory per
day (at the start and end of each day).

Example of Application with Memory Leak:

Figure 28 illustrates the memory usage with time for an application, with
code snippet attached below. As the code snippet shows, the application
gets some resources without releasing them, with each resource, the
reserved memory cannot for the resource cannot be released since the link
to the resource is not dropped, therefore, memory for each resource will be
reserved forever.

public void processReports() {

try {
List reportsids = getAllReportsldsFromDB();

79

www.manaraa.com

while (dao.next()) {
for(lterator iter = reportslds.iterator(); iter.hasNext();)

Integer reportld = (Integer) iter.next();
Report report = new Report(reportlid)
report.open();
// do things
/[Did not Close Report
} catch (Exception e) {
e.printStackTrace();

1}

Heap | PermGen

Size: 532,807,680 8 Used: 326,363,336 8
Max: 532,807,580 B

H

450 MB4

Initial Memory is now 303 MB

200 MB4

A leak which is nearly 80 MB that

150 M1 ' cannot be reclaimed even with a GC

nitial Memory was 219 MB

100 MB+

50 MBq

GOLI0PM GOMOPM GO2IDPM GOMOOPM GOB30PM GO4I0PM GM30PM GOSOOPM GOSAOEM GOSOPM GOS3DPM €07 PM
[Heapsize [Used heap

Figure 28 - Possible Heap Memory Leak

80

www.manharaa.com

Example of Application with no Memory Leak:

On the other hand, the same code but this time with releasing the open
resources.

public void processReports() { List reportsids =
getAllReportsidsFromDB();

while (dao.next()) {
for(lterator iter = reportslds.iterator(); iter.hasNext();)

Integer reportld = (Integer) iter.next();
Report report = new Report(reportld)
report.open();
// do things
report.close(); // closed resources
} catch (Exception e) {
e.printStackTrace();

Heap | PermGen x
Size: 529,793,024 8 Used: 136,201,296 B
Max: 528,793,0248
500 Mg {T ke
450 MB
400 MB
350 ME
300 MB
250 MB
200 MB
el || | | | ZL
Initial Memory now is 165
100 MB | | | 0
g MB, not much of a leak (25
Initial Memory was 152 MB ! (
MB leak compared to before)
50 MB | |
omME
9:19 PM 9:20 PM 9:21 PM 9:22 PM 923 PM 924 PM 5:25 PM 926 PM
[Heap size W Used heap

Figure 29 - Reclaimable Heap Memory

81

www.manharaa.com

A detailed report (to be developed as a future work) will show more
information regarding:

- How much memory (un-released) were used over a full day
- How long reclaiming memory did take.

From the definition of the garbage collection provided from Oracle itself,
which is garbage collection is an automatic process for memory de-
allocation of memory which is no longer used [15].

So, if memory before collection is the same or greater than memory after
collection then actually the garbage collector failed to do the job, hence it's
a memory leak.

Memory before GC >= Memory after GC

But this alone is not sufficient, because there could be some freeing
occurred that are not relevant for the objects that are not referenced and
are not the reason behind the leak.

So we can say now that a memory leak is present if:
Memory before GC >= Memory after GC
OR
Memory after GC is less than Memory after GC by a small portion.

In order to have a better analysis, memory should be analyzed more than
once for multiple garbage collections, otherwise, the analysis could be
misleading, meaning that, it could be a task that consumes large memory
and it is going to release it after it is done, which mean no memory leak is
present.

82

www.manaraa.com

That is the very simple scenario for detecting again a very simple form of
garbage collection, but actually this is not enough. Actually any heap
memory reserved over time even after the application processes are done
should be compared against the Heap memory reserved before these
processes start. This amount of memory should be reported and analyzed
with the correct tool (Heap Dump).

Report always if:

Initial Memory after GC > New Initial Memory after GC

This work votes for the second approach, reporting the difference between
the Old Initial Heap sizes before the first trigger of the first garbage
collection of any process compared to the new initial heap sizes after the
last gc for the same process.

What to do?

As said, nothing much, if a leak is present then analyzing a Heap Dump of
the memory is the only option to know which objects caused this leaking
issue and fix the code causing this accordingly, which is also out of this
research scope.

83

www.manaraa.com

1.37 4.8 Heap Size

Very critical topic that is also tricky, a question that always application
developers and administrators ask:

- Are we allocating enough Heap size for the application?

A tough question that was simplified with some simple theories after many
investigations which is as follows:

The researcher will check the Average Heap size usage, taking an
indication for the maximum amount of Heap.

This is the hypothesis:

If Heap usage is almost always full (meaning that almost always the Heap
size is fully occupied) then it is a 100% that we need to increase the Heap
size, i.e.: Heap is not sufficient for such application. Meaning that: we
should increase the Heap in general, not specific areas of Heap.

This might be tricky, a Heap might be overused or the allocated Heap is
almost always used because of a memory leak, that’s why this theory is
only valid if there is no memory leak.

This is made sure to be included in the tool, before giving users indication if
an increase in Heap size is needed, will check first if there is a memory
leak.

If there is a memory leak, then it's a 50% probability that we need to
increase the Heap size with an indication that even the 50% is wrong, so
solving the memory leak have a higher priority over increasing Heap size
because a memory leak could lead to wrong indications, hence wrong
decisions.

84

www.manaraa.com

As always, this will be suggested all by the tool which reduces the
complexity of the analysis & investigation, hence saving time.

Old & Young sizes

Old & Young sizes suggestions and recommendations are added
previously as part of the major and minor garbage collection sections.

1.38 4.9 Permanent Generation Space
It is very important to maintain a sufficient space for the permanent

generation because insufficient space could lead up to an Out of memory
error, hence a crash of the application.

It is very beneficial to catch up such issues before happening to see if there
could be a possibility of a performance issue or not.

If the amount of memory allocated for the Permanent space is almost
always the same as the amount of memory used for the Permanent space,
then it is time to increase the space of this generation.

Almost always means: either a full usage of the permanent space or almost
full usage.

1.39 4.10 Implicit & Explicit GC

Garbage collection in Java is an implicit process, meaning that it is
triggered by the JVM itself whenever it sees it appropriate.

The question here is why? Why would it be an automatic operation that the
developer has nothing to do with it?

Simply because the cleaning process of objects no longer needed is not left
to the developer, so it would make no sense to leave the triggering of the
process in the hands of the developer.

85

www.manaraa.com

Saying that, Java has provided a method (function) for the developer that it
seems that it instructs the JVM to run the garbage collection process, at the
same time, as it says in the documentation of this function, there is nothing
guaranteed that the JVM will initiate the collection process accordingly. It
only means that the JVM will take the request into consideration, but that is
not certain.

Function is:System.gc()
This leads us to the following conclusion:

The collection process is implicit operation; developer has nothing to do
with it.

But why this is topic is being brought up? That is because it appeared that
this method has a very bad side-effect on the performance of the
application, meaning that, if this method was called from the application’s
code, it will result in tremendous performance issues, so it's highly
recommended that we prevent such invocations for this method.

The garbage collection log file will be used to check if there is any call to
this function and give a hint to remove it from the code, or as a better
guicker solution to disable such invocations if present.

The parameter (option) to disable such calls is:

-XX:+DisableExplicitGC

86

www.manaraa.com

Throughput

It refers to the percentage of total time that the garbage collection process
is not taking place, for instance, 70% throughput implies that the garbage
collector consumes 30% of the JVM time.

1.40 4.11 Summary of Theories/Algorithms:

The below algorithms were extracted from different references (added
below) in order to form up a clear analysis (algorithm) to track memory
iIssues automatically. Other rules are basic rules extracted also from
Oracle, it must be noted that the below algorithms were discrete data, this
work adds up these rules in a systematic way (like a flow diagram) and
then interpreted into a tool to detect memory issues.

Major rule:

Garbage Collection stops the execution of the application, Major garbage
collection takes more time than the Minor garbage collection since Tenured
(Old space) is bigger than the Young space as discussed previously in this
chapter.

- Detects high Minor GC pause time:

1. If more than 50ms, the tool would trigger the need to tune to lower the
collection time of the Minor garbage collection. The tool logs if the size of
the Young space should be minimized accordingly to lower the collection
time.

2. If size greater than 40% of the Heap size, a recommendation to keep the
Young space below 40% of the Heap [7].

3. If the size matches point 2 criteria, then the following parameter should
be used: -XX:+UseParallelGC [8]

87

www.manaraa.com

- Detects High rate of Minor Garbage Collections:
Minor Collections should not be too frequent, once per 10 seconds [6].

1. If more than once within 10 seconds, the tool would trigger the need to
tune the number of minor collections to minimize the application’s pause
time, hence, a better user experience (faster response)

- Detects High Frequency of Major GC:

1. If more than once 10 minutes, the tool would trigger the need to tune to
lower the number of Major garbage collections. The tool then would
recommend increasing the “Old space” size if it's lower than the
recommended, below 60% of the Heap size. [7]

2. At this point, if things are set-up as expected, and still we have multiple
Full garbage collections within 10 minutes, then a high possibility of
Memory leak is available, hence, what should be done is to analyze the
heap dump.

- Detects High Full Garbage Collection Time:

1. If more than one second, then the tool would trigger the need to tune to
lower the collection time to be below 1 second. If the size of the Old space
is more than 60% of the Heap size, then the tool would recommend
lowering this size to be less than 60%.

2. If things are as expected in point 1, then the tool would trigger the need
to use the following parameters:

-XX:+UseParallelOIdGC [8]
-XX:+UseConcMarkSweepGC [8]

If application seeks throughput need, then the tool would trigger the need to
use the following flag:
-XX:-UseParallelOIdGC [9]

88

www.manaraa.com

And
-XX:-UseParallelOldGC [9] for the Young Space.
- Detects Premature Promotion:

1. If Premature Promotion is present, objects being promoted (moved) to
the Old space before they reach the expected threshold, then the tool
would trigger the need to tune by increasing the Eden space to prevent this
or by increasing the tenuring threshold. Premature Promotion triggers
Major garbage collection, which stops/freezes the application’s threads.
[16]

- Detects Missing Key Parameters:
The tool triggers an attention for the required parameters needed to best
tune the application’s performance as illustrated in section 5.2.

- Detects Explicit Garbage Collection:

The tool triggers the need to remove the explicit garbage collection calls [6]

by adding the following parameter to ignore explicit GC calls:
-XX:+DisableExplicitGC

- Report the allocation against used Heap sizes for (Young, Old and
Permanent generation space).

89

www.manaraa.com

Chapter 5—-The Tool (GC Log Analyzer)

1.41 5.1 Chapter Introduction -About the Tool

The new tool is not just a software program, it's a new approach to
enforces the theories and problems raised by the researcher in the thesis
with a practical side that helps solving issues we have nowadays in the
performance sector of applications

The gc log file has been neglected despite its importance because of the
complexity of the output and because of the known approach for solving
performance issues that depended on being reactive to any issue rather
than being proactive.

It will extract the below information from the garbage collection log which is
very beneficial in tuning the memory usage of any application:

- Free Virtual against Physical memory.

- Average usage against allocation.

- Young, Old and Permanent generations usage.

- Young, Old and Permanent generations allocation.
- Garbage Collection Distribution (Full, Minor and Explicit).
- Young GC Pause Time.

- Full GC Pause Time.

- Heap Usage in details.

- If memory leak available or not.

- Young space detailed information.

- Promotion Information.

- Garbage collections with different types in details.

90

www.manaraa.com

GC Log Analyzer

The Tool

This tool gives you the ability to know the health of Java server based application with respect to the garbage collection activities.
Garbage collection is a very significant process that could tell us a lot on the status of an application.

This tool could be used as Corrective and Preventive actions towards memory issues of an application. Other methodologies depend on getting instant readings from an application
and in order to know the status of the application from such tools, the readings should be very frequent, which as a result would be very costly.

Why GC Log?
Garbage Collection log is very important and beneficial though not costly. It is the only way that we could use to know the "Health" of the application.

Garbage collection could tell us whether there is efficient use of the memory or not, or if the memory is sufficient or not.
We can also depend on it to know if there is something wrong or not even if the users are not complaining about the performance of the application.

Pre-requisites and Hints Memory Analysis Information Garbage Collection Analysis Information Recommendations and Hints

By: Bashar Faraneh

Figure 30 - GC Log Analyzer brief description

Figure 30 gives a brief introduction about the tool, what is the tool, on what
platform it operates, the objectives of the tool and finally the need and the
importance of it.

Depending on the activities of the “Garbage collector”, it could tell us a lot
about the health of the application, from the memory availability before and
after the collection, the number of collections, the type of collections, the
lifecycle of objects between the different areas of the memory and finally
whether that the issues occurred as a result of a bad code or design of the
application.

Down the screen, we can find 4 links for this tool:

91

www.manaraa.com

Prerequisites & Hints: It explains in brief what setup or
configuration is needed to produce a beneficial log file that the
tool could depend on to give the most accurate and beneficial
results that we can use to build up our decisions as a result.

Memory Analysis Information: With the use of charts, this
module shows the different usage of the memory by the
application and the different segments of the memory against
their setup and average usage.

Garbage Collection Analysis Information: Again with the help
of charts, it shows the activities of the garbage collector in
general regarding the number of collections (how many pauses
the application experienced) and for how long these pauses
stopped the application from running (which maybe from
milliseconds to multiple seconds).

Recommendations & Hints: One of the most important
aspects of the tool, which does not only represent information as
charts, but also point to areas where the application seems to
suffer and give recommendations and hints on how to tackle
these issues.

92

www.manaraa.com

1.42 5.2 Prerequisites & Hints

GC Log Analyzer

Main Page
Pre-requisites
Before applying this tool to read the log file, the following parameters are necessary to produce an effective log that could be analyzed to give better understanding about the
application's behavior and needs.
Debug options:
Print basic GC info: -XX:+PrintGC
Print verbose GC info: -XX:+PrintGCDetails

Print details with time: -XX:4PrintGCTimeStamps
-XX:+HeapDumpOnQutOfMemoryError to generate heamp dump on OOM errors.
-XX: +PrintTenuringDistribution

-XX:+PrintHeapAtGC

-XX: +DisableExplicitGC

-XX:-OmitStackTraceInFastThrow

When to analyze?

After applying the above parameters, use the tool to analyze the GC log file that is produced from a production environment where real users are using the application for at least
24 hours, do not choose holidays and do not exclude peek hours.

Figure 31 : GC Log Usage Prerequisites

In Figure 31, the tool mentions the prerequisites of using such tool, the

correct setup and parameters that it operates within and when to analyze
the gc log.

As stated in the figure, the tool is effective to analyze a GC log file that is
produced from a production environment where real customers use the
application with real scenarios.

93

www.manaraa.com

This is important because, when application owners deliver the
product/application to customers they test and verify it based on

internal/local testing, which is not how things really go on at the customer’s
side.

It is also important that the file should be left to have as much log as
possible of a working day at the customer side, not excluding peak hours.

1.43 5.3 Memory Analysis Information

5.3.1 Virtual Memory against Free Physical Memory

GC Log Analyzer

Memory Analysis and Readings

Virtual/Physical Memory | Average UsagelAllocation |~ Young/Old/PermGen Usage | Young/Old/PermGen Allocation

Virtual Max Against Free Physical

Possible Memory Leak is found, it would be non beneficial increasing the application's memory befare solving the
memory leak, even though application's memory could be increased.

W Virtual Max Used
M Free Physical Memory

Garbage Collection Analysis Information Recommendation and Hints Pre-requisites and Hints Main Page

By: Bashar Faraneh

94

www.manharaa.com

Figure 32: GC Log — Memory Analysis — Virtual against Memory

Figure 32 shows the first reading from the GC log file after being parsed by
the new tool.

The first tab in the figure shows what the application is using memory
against what is really available as free physical memory within the
machine.

This is an important information because administrators needs sometime to
know about the status of their resources, meaning that, usually applications
and their database reside either on a separate server or even at same
server, but for a correct setup, they should not be on a server that is shared
for other services/applications, so knowing how much the resources
dedicated for the specific application could be extended is a useful
information.

An important thing to notice here is that; having the readings ready as
represented as a chart is a great thing, as it may seems, someone may
falsely drive by this reading, that's why we need a hint here to inform the
administrator that if there is a memory leak, then it should be solved first
before taking any further decision, memory leak means that the memory
resource is inefficiently used, thus even if there is a decent amount of free
memory it would be a mistake to increase the application’s memory before
solving the leak first.

As the figure shows, the “Free Physical Memory” indicates the available
“non-used” memory within the server and can be allocated for the
application. If a memory leak is not fund, then it's an opportunity to increase
the available memory for the application.

95

www.manaraa.com

5.3.2 Heap Average against Allocation
Figure 33 represents the average Heap Usage in Megabytes against the
maximum allocated Heap memory.

This gives us an indication if the allocated memory for the application is
sufficient during the life cycle of the application.

GC Log Analyzer

Memory Analysis and Readings

Average Usage/Allocation H Young/Old/PermGen Usage H Young/Old/PermGen Allocation

Virtual/Physical Memory

Average Heap Usage Against Max Heap Allocated

I Heap Average Usege Most of the Heap allocated sizes are almost used. Possible Memory Leak is found, it would be non beneficial
1 Heap Max Alocated increasing the application's memory before solving the memory leak, even though application's memory
could be increased.

Heap Distribution

Garbage Collection Analysis Information Recommendation and Hints Pre-requisites and Hints Main Page

By: Bashar Faraneh

Figure 33: GC Log — Memory Analysis — Average Usage against allocation

96

www.manharaa.com

A high average memory usage indicates that the allocated memory might
not be sufficient for the application and sooner or later we need to increase
it.

Again, if the average usage is not being affected by a memory leak, then it
Is as is seems by the chart, an increase for the available (allocate) heap
memory is needed.

Allocation refers to the memory available for usage by the application but
might not be fully used, a memory that is ready and dedicated for the
application.

5.3.3 Young, Tenured and Permanent generations Allocations

As we learned from previous figure, we saw the average heap usage
overall, here we have the ability to know how much memory each segment
of the heap consumes.

The reading of the Young generation is not quite important because, almost
always the Young space would be fully used since objects that are created
are allocated to the Young space first and when fully occupied, they are
moved to the Old space.

So it is a very common case that the Young space is almost always mostly
used, as for the OId space; it is not always the case.

97

www.manaraa.com

Permanent Generation is where classes’ objects are stored, they are
considered permanent since they live throughout the application life-time.

GC Log Analyzer

Memory Analysis and Readings

VirtuallPhysical Memory | Average Usage/Allocation | YounglOldiPermGen Usage | Young/OldiPermGen Allocation

Young/Old/PermGen Average Usage

Alocated Young Space: 299 MB
Mlocated Tenured Space: 601 MB
' Young Max Alocation Size Alocated Permanent Space; 45MB
I Tenured Max Alocation Size
B Permfien Max Alocation Stz Young Space Percentage against Heap: 30%
0ld Space Percantage against Heap: 60%
Acceptable percentage, recommended sizes: Young space no more than 45%, not less than 30%.

Garbage Collection Analysis Information ~ Recommendation and Hints ~ Pre-requisites and Hints ~ Main Page

By: Bashar Faraneh

Figure 34: GC Log — Memory Analysis — Young against Old against Permanent generation

From these readings, we can know the percentage of the Young against
Old, if within acceptable range or not.

98

www.manharaa.com

5.3.4 Young/Old & Permanent Generations usage

GC Log Analyzer

Memory Analysis and Readings

VirtuallPhysical Memory H Average Usage/Allocation ” Young/Qld/PermGen Usage H Young/Old/PermGen Allocation ‘

Young/Old/PermGen Average Usage

Average Young Space Usage: 289 MB
Average Tenured Space Usage: 597 MB

Average Permanent Space Usage: 27 MB

W Young Average used Size

I Tenured Average used Size

1 PermGen Average used Size YOUng Spafﬂ usage: 96%
0Old Space usage: 86%
Permanent Space Usage: 60%

Garbage Collection Analysis Information Recommendation and Hints Pre-requisites and Hints Main Page

By: Bashar Faranch

Figure 35: GC Log — Memory Analysis — Young against Old against Permanent generation usage.

99

www.manharaa.com

Figure 35 shows a chart that represents the different areas of the Java
Heap memory against their allocation. As stated before, the Java Heap is
divided into 3 main areas:

e Young Space.
e Old Space.
e Permanent Generation Space.

From these readings, we can know which among other areas reserves
more memory.

The final figure of the Memory analysis shows the allocated memory for the
different parts of the Heap memory, comparing to the previous chart, we
can know the allocation for each area in the Heap memory against the
average usage.

100

www.manaraa.com

1.44 5.4 Garbage Collection Analysis Information

5.4.1 Garbage Collection Distribution

Figure 36 shows the distribution of the different types of garbage
collections:

GC Log Analyzer

GC Summary and Readings

Garbage Collection Distribution H Young GC Pause Time H Full GC Pause Time

(Garbage Collection Types Distribution

Number of Full Garbage Collections: 16

Number of Minor Garbage Collections: 18
WAl GG

I Young GCs
I Explicit GCs

Number of Explicit Garbage Collections: 0

Memory Analysis Information Recommendation and Hints Main Page Pre-requisites and Hints

By: Bashar Faraneh

Figure 36: GC Log — Garbage Collection Analysis — Collection Distribution

101

www.manharaa.com

Garbage Collectors can be divided into 2 types:

- Full GC: A collector that works on the Old space area of the
heap.

- Minor GC: A collector that works on the Young space area of the
heap.

It also report garbage collections as a result of being explicitly called from
the code which has a bad impact on the performance.

It would be non-beneficial making use of these numbers because we need
to know another detail which is; the frequency of these collections of both
types. Meaning that even if the number of collections is let’'s say 100, but in
respect to what? They would be a bottleneck only if they are too frequent;
this detail is found under the “Recommendations and hints” section.

5.4.2 Young GC Pause Time

The chart within Figure 37 illustrates the pause duration in average caused
by the minor garbage collector.

Minor garbage collectors are not expected to be costly collectors since they
work on a small area of the heap (the Young) which should be usually
smaller than the Old space.

The chart shows the average pause caused by the minor gc, anything
below 0.5 seconds is acceptable.

102

www.manaraa.com

GC Log Analyzer

GC Summary and Readings

Garbage Collection Distribution H Young GC Pause Time ‘ Full GC Pause Time

Average Young Generation Pauses Duration

Acceptable pause time, Minor GCs should be minimized as possible.
The Average Young GC Pause is: 0.18 seconds.

The more the Young GCs are minimized, the better the performance is.

Pause Duration (seconds)

Memary Analysis Information Recommendation and Hints Main Page Pre-requisites and Hints

By: Bashar Faraneh

Figure 37: GC Log — Garbage Collection Analysis — Young GC Pause

103

www.manharaa.com

5.4.3 Full GC Pause Time
The chart in figure 38 shows the pause duration caused by the Full
garbage collector which are expected to take more time than minor

garbage collectors because they work on an area larger than the Young
space.

GC Log Analyzer

GC Summary and Readings

Garbage Collection Distribution Full GC Pause Time

Young GC Pause Time

Average Full Generation Pauses Duration

High Pause Time were detected!
The Average Full GC Pause is: 2.38 seconds.

Full GCs pause time are not acceptable, it needs to be tuned. Anything below 1 second is only acceptable.

Pause Duration (seconds)

Memory Analysis Information Recommendation and Hints Main Page Pre-requisites and Hints

By: Bashar Faraneh

Figure 38: GC Log — Garbage Collection Analysis — Old GC Pause

104

www.manharaa.com

1.45 5.5 Recommendations & Hints

5.5.1 Heap Usage Details

GC Log Analyzer

Recommendations and Hints

‘ Memory Leak ‘ Heap Info H Young Space Info H Promotion Info H Garbage Collections Details H Explicit GC H Responsiveness Need H Throughput Need ‘

Initial Heap Size Heap Average Usage ~ Maximum Heap Usage

50 MB 790 MB 990 MB

-Heap memory seems insufficient for the application, please consider increasing Heap size to prevent out of memory errars,

- Please consider solving the memory leak before increasing Heap size then re-evaluate the need.
-Itis recommended to increase the initial Heap size or to set it the same as the Maximum Heap available.

Memory Analysis Information ~ Garbage Collction Analygis Information ~ Pre-requisites and Hints ~ Main Page

By: Bashar Faraneh

Figure 39: GC Log — Recommendations & Hints — Heap Info

105

www.manharaa.com

Figure 39 shows the Heap usage info:

- Initial Heap size: It represents the initial heap that the application
started with.

- Average Heap Usage.

- Maximum Heap Usage.

What we can benefit here is that, if the initial Heap is a lot lower than the
average heap usage, then the Initial Heap size should be increased a lot or
should be set to the same as the maximum reserved heap size.

It also shows that the Heap memory seems insufficient and we might need
to increase it, but as shown, it checks first if there is a memory leak, if so, it
should be solved first before really increasing the heap.

5.5.2 Premature Promotion Information

106

www.manaraa.com

GC Log Analyzer

Recommendations and Hints

‘ Memory Leak || Heaplnfo | YoungSpacelnfo | Promotioninfo | Garbage Collections Details = ExplicitGC | ResponsivenessNeed = Throughput Need ‘
Premature Promotion % Number of Premature Promotion Desired Survivor Size Max Tenuring Threshold
mi b 16 MB §

Your application suffers from Premture Promotion, It is highly recommended to solve the Memory leak first before solving premature promotion.

Premature Promotion occurs when objects that should be collected quickly in a Young memaory pool (Eden, Survivor, both Survivor 0 or Survivor 1) are being promoted to the
Tenured memory pool before they should be.

Possible Causes Are;

1. The Eden and/or Survivor spaces may be too small
2. The max tenuring threshold flag may have been set too low.

Memory Analysis Information ~ Garbage Collection Analysis Information ~ Pre-requisites and Hints ~ Main Page

By: Bashar Faraneh

Figure 40: GC Log — Recommendations & Hints — Promotion Information

Figure 38 illustrates the premature promotion information of objects. As we
know, promotion is the process of moving objects from the Young space to
the tenured space, which is a normal thing.

107

www.manharaa.com

What is not normal is the premature promotion where we should minimize it
as possible.

Premature promotion is when objects are moved from the Young space to
the tenured space earlier than expected.

There is a specific threshold as discussed earlier by which objects are
allowed to be tenured to the Tenured space, this is important because we
want to minimize the rate of moving objects from the Young space to the
Old space to minimize the Full garbage collection because it is a costly
operation.

As shown it contains the premature promotion percentage which
represents the rate of premature promotions against the total number of
promotions.

It is also recommended to solve memory leaks before trying to solve
premature promotion, because a memory leak could be one of the main
causes for the leak.

If no memory leak is found, then the problem can be solved either:

- The Eden/Survivor spaces maybe too small.
- The max tenuring threshold may need to be increased.

108

www.manaraa.com

5.5.3 Full GC Information

Memory Leak Heap Info ‘ Young Spacenfo Promotion Info ‘ Garhage Collections Details H ExplicitGC Responsiveness Need ‘ Throughput Need ‘

Number of Explicit Garbage Collections: 0

Minor GCs | Full GCs

Number of Full Garbage Collections: 16 Full 6Cs are not too frequent,
Highest GC Pause: 30 seconds. High Pause Time were detectad!
verage Full GC PauseTim: 23 seconds. The average Pause Time is considered high, this s criticall

Full GCs pause time are not acceptable, it neads to be tuned. Anything below 1 second is only acceptable.

Recommendations:

Check the 0Id space, ift's too big, then this is the explanation, hence we need to decrease it Should not be more than 60% of the Heap, but can be lower than that.If that did not work, or if
the size of the Old space is reasonable, try the following solutions:

- If you seek for throughput, make sure you are using the following parameters » -XX:+UseParallelOldGC.

- (therwise, if you are seeking responsiveness, use the following: o -XX:+UseConcHarkSweepGC along with -XX:Paralle\CMSThreads and -XX:+CMSClassUnloadingEnabled parameters,

Figure 41: GC Log — Recommendations & Hints — Full GCs Information

109

www.manharaa.com

Figure 39 is very important where it illustrates detailed information about
the status of the different types of garbage collectors which are FULL and
Minor.

As shown, it informs us with the following:
- Total number of Full garbage collections.

This implies if there are many garbage collections or not, still this does not
mean a lot because it depends on the duration within the collection is
happening.

- Implies if there is any frequent garbage collections or not.

This is important since it informs us if we have to worry about the number
of collections, i.e.: whether the collections are too frequent or not. It could
imply a lot, like if the application’s time is being spent in collection or not.

- The Average pause time of the Full garbage collections.

Implies the average pause time of the application, i.e.: the average pause
time of the application not being spent for the application threads itself.

- The Highest pause time of Full garbage collections.

Implies the highest pause time of Full garbage collection, anything more
than one second is not acceptable.

110

www.manaraa.com

5.5.4 Minor GCs

Figure 42 illustrates the Minor garbage collection information as the Full
Garbage collection information in the previous page.

Minor 6Cs | Full GCs
Number of Minor Garbage Collections: 18 Minor GCs are not too frequent.
Highest Minor GC Pause: 047 Acceptable pause time, Minor GCs should be minimized as possible.
Average Minor GC Pause Time: 0.18 seconds.

Recommendations:

No recommendations

Memory Analysis Information Garbage Collection Analysis Information Pre-requisites and Hints Main Page

By: Bashar Faraneh

Figure 42: GC Log — Minor GCs Details

The only difference here is what is acceptable for minor garbage collection
IS not acceptable for major (Full) garbage collection.

111

www.manharaa.com

5.5.5 Memory Leak

Figure 43 shows if there is a memory leak or not, if there is, then nothing
that this tool could do about, it has done a sufficient job figuring out if there
is a leak or not.

GC Log Analyzer

Recommendations and Hints

‘ Throughput H Memory Leak H Heap Info H Young Space Info H Promotion Info H Garbage Collections Details H Explicit GC H Responsiveness Need H Throughput Need ‘

High Possibility of Memory Leak Available, Please use Heap Dump to analyze Leak.

Memory Analysis Information ~ Garbage Collection Analysis Information ~ Pre-requisites and Hints ~ Main Page

By: Bashar Faraneh

Figure 43: GC Log — Memory Leak Information

Memory leaks are usually hard to discover.
The approach that was followed to discover a memory leak:

Scan all garbage collections of type “Full” and check the memory before
and after the collection.

To figure out a memory leak, we should depend on:

112

www.manharaa.com

- Memory Freed amount.

- Number of Full GCs.

- Amount of memory freed.

- The number of occurrences of possible memory leak.

Consider the following:
Memory used before leak is: preUsedMemory
Memory used after leak is: postUsedMemory

- If the postUsedMemory is greater than or equal to the
preUsedMemory >> Possible Leak, because what is expected
from the Full garbage collection when it runs is to free a decent
amount of memory. If memory was not freed after the Full GC or
it did increase after it, then this could mean a possible memory
leak, still may not be.

- If memory was freed but with a very small amount. Meaning
that, objects that are not related to the leak were released only.

- The above hypotheses are only valid if a number of such
readings occur. A single occurrence does not indicate a memory
leak.

Discovering if a memory leak is found or not is half the way solving

performance problems since they were hard to discover, it is important to
solve because if a leak is found, if any process that needs a high memory
will spike the memory in use and as a result would cause a system crash.

The next step after finding a leak is to analyze which objects are causing
this, which is out of this tool's league (Since this is an offline tool).

113

www.manaraa.com

5.5.6 Young Space Info

GC Log Analyzer

Recommendations and Hints

‘ Throughput H Memory Leak H Heap Info H Young Space Info H Promotion Info H Garbage Collections Details H Explicit GC H Responsiveness Need H Throughput Need ‘

Survivor Size EdenSpaceSize Young Space Size

35 MB 266 MB 332 M8

If noleak s found and a premature promotion is found, then this means that the Survivor space should be increased.
Otherwise, the top priority is to solve memory leaks before proceeding with any tuning strategy.

Memory Analysis Information ~ Garbage Collection Analysis Information ~ Pre-requisites and Hints ~ Main Page

By: Bashar Faraneh

Figure 44: GC Log - Young Space Information

Figure 44 illustrates the Young space detailed information:

- Survivor Size.
- Eden Size.
- Total Young space size.

114

www.manharaa.com

The small size of Survivor size could result in premature promotion which
as a result increases the possibility of FULL garbage collections, which as
a result, suspends the application for more time.

55.7 Explicit GC

GC Log Analyzer

Recommendations and Hints

’ Throughput H Memory Leak H Heap Info H Young Space Info H Promotion Info H Garbage Collections Details ” Explicit GC H Responsiveness Need H Throughput Need ‘

No Explicit GCs found. Explicit GC is disabled. This is good.

Memory Analysis Information Garbage Collection Analysis Information Pre-requisites and Hints ~ Main Page

By: Bashar Faraneh

Figure 45: GC Log - Explicit GC Information

Figure 45 shows if there is an explicit garbage collection which causes Full
GCs. Explicit GCs should be avoided.

115

www.manharaa.com

5.5.8 Responsiveness Need

GC Log Analyzer

Recommendations and Hints

Explicit GC

Throughput

ST e —

Memory Leak H Heap Info ‘

Young Space Info H Promotion Info H Garbage Collections Details

If an application seeks high Responsiveness Need (Low Pause Need):
This refers or focuses on how quickly the application responds to a specific request, examples:

* How quickly a desktop UI responds to an event
* How fast a website returns a page
¢ How fast a database query is returned

These types of applications do not tolerate large pause times. Usually this is used on machines with two or more processors in order to share the resources (processor threads)
with the garbage collector so that in order to omit pauses (stop-the-world).

In another words, in order to clean the Old space with minimized pauses, it uses a separate garbage collector thread to run side by side with the applications threads, thus the
application does not pause for garbage collection.

To enable this type of collection, use the following option:
-XX:+UseConcMarkSweepGC

Memory Analysis Information Garbage Collection Analysis Information Pre-requisites and Hints Main Page

By: Bashar Faraneh

Figure 46: GC Log — Responsiveness Need

Figure 46 illustrates how to fulfill the responsiveness need of an
application. As hints and guidelines with examples for real cases where the
responsiveness is needed.

116

www.manharaa.com

5.5.9 Throughput Need

GC Log Analyzer

Recommendations and Hints

Memory Leak | Heap Info Explicit GC

Young Space Info H Promotion Info

{ Garbage Collections Details

{ Throughput Responsiveness Need H Throughput Need

If the focus is on maximizing the number of tasks done within a specific time, not focusing on quick response time,
examples:

¢ The number of transactions completed in a given time.
* The number of jobs that a batch program can complete in an hour.
¢ The number of database queries that can be completed in an hour.

To enable this type of collection, use the following option:

For Young: -XX:-UseParallelGC

For Old: -XX:-UseParallelOldGC and -XX:ParallelGCThreads

Memery Analysis Information Garbage Collection Analysis Information Pre-requisites and Hints Main Page

Figure 47: GC Log — Throughput Need

Figure 47 illustrates how to fulfill the throughput need of an application. As
hints and guidelines with examples for real cases where the throughput is
needed.

117

www.manharaa.com

1.46 5.6 Tool Technical Details

Used tools/technologies:

The used technology to implement such tool was the latest Java
version which is 1.6.

JSF based implementation; PrimeFaces was used to draw
charts.

Java I/O API's to read and parse information.

Gceviewer API’s that reads certain information from the gc log.
Eclipse IDE for Java as the development.

Java JMX for performance readings.

1.47 5.7 Samples from code

/**

* This method is used to find possible indications of memory leak, then
these readings

* will be analyzed to check if the pattern indicates a memory leak.

* @return

*/

public List getPossibleMemoryLeaks() {

List possibleLeaks = new LinkedList();

118

www.manaraa.com

for (Iterator iterator = gcModel.getGCEvents();
iterator.hasNext();) {

GCEvent event = (GCEvent) iterator.next();
if (‘event.isFull()) {

continue;

int preUsed = event.getPreUsed();

int postUsed = event.getPostUsed();

If((postUsed >= preUsed) || isPostLessByLittle(preUsed,

postUsed)) {
possibleLeaks.add(true);
} else {
possibleLeaks.add(false);
}
}

return possibleLeaks;

/**

119

www.manharaa.com

* @return
*/
public boolean isExplicitGCDisabled() {

RuntimeMXBean runtimeMxBean =
ManagementFactory.getRuntimeMXBean();

List<String> arguments = runtimeMxBean.getinputArguments();

StringBuilder text = new StringBuilder();

for (Iterator iterator = arguments.iterator(); iterator.hasNext();) {
String string = (String) iterator.next();

text.append(string);

}
return SysteminfoUtility

.IsParameterExists(text.toString(), "-XX:+DisableExplicitGC");

120

www.manaraa.com

/**

*

* @return
*/
public boolean isFullGCsTooFrequent() {

Date firstCollectionTime = null;
int numberOfGces = 0;
List possibleTooFrequentMinorGCsList = new ArrayList();

for (Iterator iterator = gcModel.getFullGCEvents();
iterator.hasNext();) {

GCEvent event = (GCEvent) iterator.next();
numberOfGcs++;
If (firstCollectionTime == null) {
firstCollectionTime = event.getDatestamp();
continue;
}
Date currentGCCollectionTime = event.getDatestamp();

if (getDateDifference(firstCollectionTime,
currentGCCollectionTime) < 10) {

possibleTooFrequentMinorGCsList.add(1);

121

www.manaraa.com

continue;

}
If (((possibleTooFrequentMinorGCsList.size() / numberOfGcs) *
100) >= 60) {
/I most of the garbage collections are very frequent.. so this
IS
// not normal
return true;
}

return false;

122

www.manharaa.com

public int getMaxTenuringThreshold() {

try {

BufferedReader br = new BufferedReader(new
FileReader(file));

String line = br.readLine();

while (line '= null) {

if (line.contains("Desired survivor size")) {

int indexOfSize = line.indexOf("max");

int indexOfBytes = line.indexOf(")");

String s1 = line.substring(indexOfSize + 3,

indexOfBytes);

return (Integer.valueOf(s1.trim()));

}

line = br.readLine();

123

www.manharaa.com

} catch (IOException e) {
/[TODO Auto-generated catch block

e.printStackTrace();

return -1;

/**

*

* @param gcModel
* @return
*/

public boolean shouldSetMaxAndMinHeapSame(GCModel
gcModel) {

double averageHeapAllocated =
gcModel.getHeapAllocatedSizes().average();

double maxHeapAllocatedSize =
gcModel.getHeapAllocatedSizes().getMax();

double minHeapAllocatedSize =
gcModel.getHeapAllocatedSizes().getMin();

124

www.manharaa.com

double maxAvgDifference = maxHeapAllocatedSize -
averageHeapAllocated;

double minAvgDifference = averageHeapAllocated -
minHeapAllocatedSize;

If ((minAvgDifference < 0) || (maxAvgDifference >
minAvgDifference)) {

return false;

}

return true;

125

www.manharaa.com

Chapter Six - Conclusions and Future Work

To summarize up what this work has presented:

v Detecting memory related issues during the life-time of the
application in a very simple way.

v Provided a tool which helps targeting and solving memory issues by
which:

1. Provide an efficient/easy way to know performance issues
related to memory before it turns out to be a show-
stopper issue.

2. Provide a decent way to know in details, how the garbage
collector is performing.

3. Provide a way to tune garbage collection performance.

4. Provide a way to know if there is a memory leak, even if

the application’s performance seems fine.

Up to this point, the researcher believes that this tool is good
and sufficient for now, still could bare a number of
modifications and additions to add up more features.

As an enhancement, adding the ability to analyze memory based on a full
working business day. Doing so enables analyzing the performance of an
application for a specific day in order to get more accurate readings.

As another addition would be to add up the system’s admin email to enable
the tool to send the log on a daily basis to analyze the performance of the
customer’s environment, even if the users are not complaining from
anything.

126

www.manaraa.com

What the tool is used to tackle is memory related issues, now in order to
target most of the performance issues, Thread analyzer could be
developed to provide features not available in the current thread dump
analysis tools, by this, most of the performance issues are covered that are
of type: Memory or CPU related.

Finally, the methodologies presented in this work shifts our way of
approaching performance issues to a new level to be more proactive rather
than reactive.

Rather than waiting for a serious/severe performance issues to come up,
this new approach help discovering such issues before, thus preventing
them from exploding.

127

www.manaraa.com

References

[1] http://docs.oracle.com/cd/B14117 01/server.101/b10726/overview.htm.
Accessed on Nov 2013

[2] Jose Manuel Velasco, David Atienza Katzalin Olcoz “Memory power
optimization of Java-based embedded systems exploiting garbage
collection information”, University of Madrid, August 2009

[3] https://plumbr.eu/blog/what-is-a-memory-leak Accessed on Oct 3, 2013
[4]

http://pic.dhe.ibm.com/infocenter/isa/v4arlmO/index.jsp?topic=%2Fcom.ibm.
[ava.diagnostics.memory.analyzer.doc%2Fheapdump.html Accessed on
Sep 14, 2013

[5]
http://docs.oracle.com/cd/E13150 01/jrockit jvm/jrockit/geninfo/diagnos/ga
rbage collect.html accessed on Dec 4, 2013

[6] http://architects.dzone.com/articles/how-tune-java-garbage accessed on
Sep 17, 2013

[7] Carol McDonald, Sun Microsystems,
http://www.slideshare.net/caroljmcdonald/java-garbage-collection-
monitoring-and-tuning, accessed on 4 Nov 2013.

[8] http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-
140102.html, accessed on Sep 28, 2013

[9] http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Accessed on Oct 5, 2013.

[10] http://www.c0t0d0s0.org/archives/6617-About-Java,-parallel-garbage-
collection-and-processor-sets.html accessed on Nov 10, 2013

128

www.manaraa.com

http://docs.oracle.com/cd/B14117_01/server.101/b10726/overview.htm.
https://plumbr.eu/blog/what-is-a-memory-leak
http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/index.jsp?topic=%2Fcom.ibm.java.diagnostics.memory.analyzer.doc%2Fheapdump.html
http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/index.jsp?topic=%2Fcom.ibm.java.diagnostics.memory.analyzer.doc%2Fheapdump.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
http://architects.dzone.com/articles/how-tune-java-garbage
http://www.slideshare.net/caroljmcdonald/java-garbage-collection-monitoring-and-tuning
http://www.slideshare.net/caroljmcdonald/java-garbage-collection-monitoring-and-tuning
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.c0t0d0s0.org/archives/6617-About-Java,-parallel-garbage-collection-and-processor-sets.html
http://www.c0t0d0s0.org/archives/6617-About-Java,-parallel-garbage-collection-and-processor-sets.html

[11]
http://docs.oracle.com/cd/E13209 01/wlcp/wlss30/configwlss/jvmgc.html
accessed on Sep 14, 2013.

[12] Guoging Xu, Atanas Rountev “Precise Memory Leak Detection for
Java Software Using Container Profiling”, University of Ohio, May 2008

[13] Leon Chen, Java consultant at Oracle, Introduction of Java GC Tuning
and Java mission Control, http://www.slideshare.net/leonjchen/java-
optimization-twjuqg

[14] http://www.oracle.com/technetwork/java/javase/tech/vmoptions-|sp-
140102.htm accessed on 17 Oct 2013

[15]
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.
html accessed on Dec 4, 2013.

[16]
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ib
m.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf hotspot parms.
html, accessed on Sep 5, 2013.

129

www.manaraa.com

http://docs.oracle.com/cd/E13209_01/wlcp/wlss30/configwlss/jvmgc.html
http://www.slideshare.net/leonjchen/java-optimization-twjug
http://www.slideshare.net/leonjchen/java-optimization-twjug
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.htm
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.htm
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=%2Fcom.ibm.websphere.express.doc%2Finfo%2Fexp%2Fae%2Frprf_hotspot_parms.html

